tìm x và A nhỏ nhất:
\(A=\left|2x+5\right|+10\)
tìm giá trị nhỏ nhất của biểu thức A =\(\left|2x-4\right|\) +\(\left|2x-6\right|\) +\(\left|2x-8\right|\)
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=(|2x-4|+|2x-8|)+|2x-6|=(|2x-4|+|8-2x|)+|2x-6|$
$\geq |2x-4+8-2x|+|2x-6|$
$=4+|2x-6|\geq 4$
Vậy $A_{\min}=4$. Giá trị này đạt tại \(\left\{\begin{matrix}
(2x-4)(8-2x)\geq 0\\
2x-6=0\end{matrix}\right.\Leftrightarrow x=3\)
Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :
\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .
Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :
\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .
Bài 4 : Cho các số dương a,b,c . Chứng minh :
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1
Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)
Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
neu de bai bai 1 la tinh x+y thi mik lam cho
đăng từng này thì ai làm cho
We have \(P=\frac{x^4+2x^2+2}{x^2+1}\)
\(\Rightarrow P=\frac{x^4+2x^2+1+1}{x^2+1}\)
\(=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)
\(=\left(x^2+1\right)+\frac{1}{x^2+1}\)
\(\ge2\sqrt{\frac{x^2+1}{x^2+1}}=2\)
(Dấu "="\(\Leftrightarrow x=0\))
Vậy \(P_{min}=2\Leftrightarrow x=0\)
Tìm gái trị lớn nhất hoặc nhỏ nhất
\(-10-\left(x-3\right)^2-|y-5|\)
Giải bất phương trình sau và tìm nghiệm nhỏ nhất?
2-\(\dfrac{3\left(x+1\right)}{8}\)<3+\(\dfrac{x-1}{4}\)
\(\Leftrightarrow16-3\left(x+1\right)< 24+2\left(x-1\right)\)
=>16-3x-3<24+2x-2
=>-3x+13<2x+22
=>-5x<9
hay x>-9/5
tìm giá trị nhỏ nhất:
\(A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\)
A = l x + 5 l + l x + 2 l + l x - 7 l + l x - 8 l
= l x + 5 l + lx + 2 l + l 7-xl + l 8 - x l \(\ge\) l x + 5 +x + 2 + 7 - x + 8 -x l = l22l = 22
Vậy minA = 22 khi
{ x + 5 >= 0 { x>= -5
{ x + 2 >= 0 { x>= - 2
{ 7 - x >= 0 { x <= 7
{ 8- x >= 0 { x < = 8
Vậy min A = 22 khi -2 <=x <= 7
Phá dấu GTTĐ:
+) Nếu x \(\ge\) - 5 => |x + 5| = x+ 5
x < - 5 => |x + 5| = -(x + 5) = - x - 5
+) Nếu x \(\ge\) - 2 => |x +2| = x+ 2
x < - 2 => |x + 2| = - (x + 2) = - x - 2
+) Nếu x \(\ge\) 7 => |x - 7| = x - 7
x < 7 => |x - 7| = - (x - 7) = - x + 7
+) Nếu x \(\ge\) 8 => |x - 8| = x - 8
x < 8 => |x - 8| = -(x - 8) = x + 8
Sắp xếp các số : -5; -2; 7;8
Xét các trường hợp sau:
TH1: x < - 5
=> A = - x - 5 - x - 2 - x+ 7 - x + 8 = -4x + 8 > (-4).(-5) + 8 = 22 (do x < - 5 )
Th2: -5 \(\le\) x < -2
=> A = x + 5 - x - 2 - x+ 7 - x + 8 = -2x + 18 > (-2).(-2) + 18 = 22
TH3: -2 \(\le\) x < 7
=> A = x + 5 + x+ 2 - x + 7 - x + 8 = 22
TH4: 7 \(\le\) x < 8
=> A = x+ 5 + x + 2 + x - 7 - x + 8 = 3x + 8 \(\ge\) 3.7 + 8 = 29
Th5: x \(\ge\) 8
=> A = x + 5 + x + 2 + x - 7 + x - 8 = 4x - 8 \(\ge\) 4.8 - 8 = 24
Từ 5TH trên => Min A = 22 khi -2 \(\le\) x < 7
làm
5. Tìm giá trị nhỏ nhất của B= (x+1)2 + (y+3)2+1
Ai nhanh mk tick cho
ghi rõ cách làm nha
tìm giá trị nhỏ nhất và lớn nhất a= /x-5/ - /x-7/ b= /125-x / +/x+ 65/
a) \(\left|x-5\right|-\left|x-7\right|=\left|x-5\right|-\left|x-5-2\right|\ge\left|x-5\right|-\left(\left|x-5\right|-2\right)=2\)
Dấu \(=\)khi \(-2\left(x-5\right)\ge0\Leftrightarrow x\le5\).
b) \(\left|125-x\right|+\left|x+65\right|\ge\left|125-x+x+65\right|=190\)
Dấu \(=\)khi \(\left(125-x\right)\left(x+65\right)\ge0\Leftrightarrow-65\le x\le125\).
Tìm giá trị nhỏ nhất của A= \(\left|x-2014\right|+\left|2015-x\right|+\left|x-2016\right|\)
1. Cho x,y là các số nguyên có 3 c/s
Tìm x và y để
a) x+y có giá trị nhỏ nhất
b) x+y = 500
c) x-y có gt lớn nhất
d) -x-y có gt nhỏ nhất
2. Cho /x/ = 11 và /y+1/=15
a) tìm x và y
b) Tìm x-y và y-x
3. cho /x/+/y/=13
a) Tìm x+y
b) Tìm x-y
BÀI 2:
\(\left|x\right|=11\)\(\Rightarrow\)\(x=\pm11\)
\(\left|y+1\right|=15\)\(\Rightarrow\)\(\orbr{\begin{cases}y+1=15\\y+1=-15\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y=-14\\y=-16\end{cases}}\)