H24

tìm giá trị nhỏ nhất của biểu thức A =\(\left|2x-4\right|\) +\(\left|2x-6\right|\) +\(\left|2x-8\right|\)

AH
24 tháng 3 2023 lúc 23:37

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=(|2x-4|+|2x-8|)+|2x-6|=(|2x-4|+|8-2x|)+|2x-6|$

$\geq |2x-4+8-2x|+|2x-6|$

$=4+|2x-6|\geq 4$
Vậy $A_{\min}=4$. Giá trị này đạt tại \(\left\{\begin{matrix} (2x-4)(8-2x)\geq 0\\ 2x-6=0\end{matrix}\right.\Leftrightarrow x=3\)

Bình luận (1)

Các câu hỏi tương tự
EC
Xem chi tiết
Xem chi tiết
ND
Xem chi tiết
TA
Xem chi tiết
HL
Xem chi tiết
OM
Xem chi tiết
SL
Xem chi tiết
LC
Xem chi tiết
DD
Xem chi tiết