Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=(|2x-4|+|2x-8|)+|2x-6|=(|2x-4|+|8-2x|)+|2x-6|$
$\geq |2x-4+8-2x|+|2x-6|$
$=4+|2x-6|\geq 4$
Vậy $A_{\min}=4$. Giá trị này đạt tại \(\left\{\begin{matrix}
(2x-4)(8-2x)\geq 0\\
2x-6=0\end{matrix}\right.\Leftrightarrow x=3\)