Những câu hỏi liên quan
TV
Xem chi tiết
H24
10 tháng 4 2023 lúc 21:37

\(B=\left(\dfrac{x}{\sqrt{x}-1}+\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}\right).\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\\ =\left(\dfrac{x}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\right).\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\\ =\left(\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\right).\left(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right)\\ =\left(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\right).\left(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right)\\ =\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\right).\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\\ =\dfrac{1}{\sqrt{x}}=\dfrac{\sqrt{x}}{x}\)

Bình luận (0)
GB
Xem chi tiết
VT
22 tháng 7 2023 lúc 7:38

Bạn đăng từng câu 1 nhé

Bình luận (1)
NT
22 tháng 7 2023 lúc 11:03

a: \(P=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b: \(=\dfrac{2\left(2\sqrt{x}+1\right)+3\left(\sqrt{x}-2\right)-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)

\(=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)

Bình luận (0)
PP
Xem chi tiết
NL
12 tháng 4 2021 lúc 20:09

\(P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}+1\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^3+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=4\end{matrix}\right.\) \(\Rightarrow a+b=7\)

Bình luận (0)
LL
Xem chi tiết
NT
30 tháng 9 2021 lúc 22:25

Bài 1: 

a: Ta có: \(x^2-2\sqrt{5}x+5=0\)

\(\Leftrightarrow x-\sqrt{5}=0\)

hay \(x=\sqrt{5}\)

b: Ta có: \(\sqrt{x+3}=1\)

\(\Leftrightarrow x+3=1\)

hay x=-2

Bình luận (0)
NL
Xem chi tiết
LP
Xem chi tiết
AH
28 tháng 12 2023 lúc 13:49

Lời giải:

a.

\(B=\frac{2\sqrt{x}(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-2x}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{x-3\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)

b.

\(P=AB=\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}+3}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)

Để $P<0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+3}<0$

Mà $\sqrt{x}+3>0$ nên $\sqrt{x}-2<0$

$\Leftrightarrow 0< x< 4$

Kết hợp với ĐKXĐ suy ra $0< x< 4$

Mà $x$ nguyên nên $x\in left\{1; 2; 3\right\}$

 

Bình luận (0)
NP
Xem chi tiết
NT
12 tháng 8 2021 lúc 21:25

a: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)-\left(2\sqrt{x}+1\right)+1\)

\(=x+\sqrt{x}-2\sqrt{x}-1+1\)

\(=x-\sqrt{x}\)

b: Ta có: \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)

\(=\dfrac{x-4+5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

Bình luận (1)
TN
Xem chi tiết
H24
1 tháng 12 2021 lúc 16:23

1. không đáp án đúng

2.\(\dfrac{1}{y-x}\sqrt{2x^2\left(x-y\right)^2}=\dfrac{-1}{x-y}x\left(x-y\right)\sqrt{2}\left(vì>y>0\right)=-x\sqrt{2}\)

Bình luận (2)
NT
Xem chi tiết
AH
16 tháng 7 2018 lúc 15:56

A)

Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )

\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)

\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)

\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)

Có:

\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)

\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)

Bình luận (0)
AH
16 tháng 7 2018 lúc 16:23

B)

\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)

\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)

\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)

\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$

T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)

\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)

Bình luận (0)
AH
16 tháng 7 2018 lúc 16:43

C)

\(2x=\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}}\Rightarrow 4x^2=\frac{1-a}{a}+\frac{a}{1-a}-2\)

\(\Rightarrow 4(x^2+1)=\frac{1-a}{a}+\frac{a}{1-a}+2=(\sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}})^2\)

\(\Rightarrow \sqrt{4(x^2+1)}=\sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}}\)

Khi đó:

\(C=\frac{2a\sqrt{4(1+x^2)}}{\sqrt{4(x^2+1)}-2x}=\frac{2a\left ( \sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}} \right )}{\sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}}-(\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}})}=\frac{a\left ( \sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}} \right )}{\sqrt{\frac{a}{1-a}}}\)

\(=\frac{\frac{a(1-a+a)}{\sqrt{a(1-a)}}}{\sqrt{\frac{a}{1-a}}}=1\)

Bình luận (0)
DN
Xem chi tiết
NT
23 tháng 4 2023 lúc 14:28

\(=\dfrac{3\sqrt{x}-x+2x}{9-x}:\dfrac{\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{-\sqrt{x}+5}\)

\(=\dfrac{x}{\sqrt{x}-5}\)

Bình luận (0)