CM A = x4-4x3+7x2-6x+2 không phải là số chính phương
Tìm giá trị nhỏ nhất của biểu thức A= x4-4x3+7x2-12x+75
Lời giải:
$A=x^4-4x^3+7x^2-12x+75$
$=(x^2-2x)^2+3x^2-12x+75$
$=(x^2-2x)^2+3(x^2-4x+4)+63$
$=(x^2-2x)^2+3(x-2)^2+63\geq 63$
Vậy $A_{\min}=63$. Giá trị này đạt tại $x^2-2x=x-2=0$
$\Leftrightarrow x=2$
tìm giá trị nhỏ nhất của biểu thức A= x4-4x3+7x2-12x+75
\(A=\left(x^4-4x^3+4x^2\right)+\left(3x^2-12x+12\right)+63\)
\(A=x^2\left(x^2-4x+4\right)+3\left(x^2-4x+4\right)+63\)
\(A=\left(x^2+3\right)\left(x-2\right)^2+63\ge63\)
\(A_{min}=63\) khi \(x=2\)
Bài 7: Chứng minh rằng các đa thức sau là bình phương của một đa thức
a.A = x4+ 4x3+ 2x2– 4x + 1
Gợi ý: giảsử: x4+ 4x3+ 2x2–4x + 1= (ax2+ bx + c).(ax2+ bx + c)
Tính vế phải và đồng nhất hệ số với vế trái
b.B = x4-6x3+ 19x2–30x + 25
c.C = 4x2+ y2–4xy + 8x –4y + 4
Giúp mình gấp với ạ!
c) Ta có: \(C=4x^2+y^2-4xy+8x-4y+4\)
\(=\left(2x-y\right)^2+2\cdot\left(2x-y\right)\cdot2+2^2\)
\(=\left(2x-y+2\right)^2\)
Giair các phương trình
a) x4 - 4x3 - 19x2 + 106x - 120 = 0
b) 4x4 + 12x3 + 5x2 - 6x - 15 = 0
\(a,x^4-4x^3-19x^2+106x-120=0\\ \Rightarrow\left(x-4\right)\left(x^3-19x+30\right)=0\Rightarrow\left(x-4\right)\left(x+5\right)\left(x^2-5x+6\right)=0\\ \Rightarrow\left(x-4\right)\left(x+5\right)\left(x-2\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=-5\\x=2\\x=3\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{-5;2;3;4\right\}\)
\(b,4x^4+12x^3+5x^2-6x-15=0\\ \Rightarrow\left(x-1\right)\left(4x^3+16x^2+21x+15\right)=0\\ \Rightarrow\left(x-1\right)\left[\left(4x^3+10x^2\right)+\left(6x^2+15x\right)+\left(6x+15\right)\right]=0\\ \Rightarrow\left(x-1\right)\left[2x^2\left(2x+5\right)+3x\left(2x+5\right)+3\left(2x+5\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(2x+5\right)\left(2x^2+3x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{2}\\2x^2+3x+3=0\left(vô.lí\right)\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{1;-\dfrac{5}{2}\right\}\)
1. Cho n lẽ. CMR: n2020 + 1 không phải số chính phương
2. Cho n thuộc Z. CM: A = n4 + 2n3 + 2n2 + n + 7 không phải là số chính phương
3. Cho n lẽ. CM : n3 + 1 không phải là số chính phương
1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)
Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.
2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương
\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)
\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)
Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:
+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)
\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)
+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)
\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.
3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:
---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)
Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau
Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau
---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)
Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)
Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)
-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)
Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.
Bài 3 : Cho x là số nguyên.Cmr :
B= x4 - 4x3 - 2x2 + 12x + 9 là bình phương số nguyên
Bài 4 : Cho x,y,z là số nguyên.Cmr :
C= 4x.(x + y).(x + y + z).(x + z) + y2z2 là một số chính phương
Giúp mình nha.Mai là hạn cuối rồi!
Bài 3:
\(B=x^4-4x^3-2x^2+12x+9\)
\(=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)
\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)
\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)
\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\)
\(=\left(x^2-2x-3\right)^2\)
Bài 3:
\(B=x^4-4x^3-2x^2+12x+9=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(3x^2+3x\right)+\left(9x+9\right)=\left(x^3-5x^2+3x+9\right)\left(x+1\right)=\left[\left(x^3+x^2\right)-\left(6x^2+6x\right)+\left(9x+9\right)\right]\left(x+1\right)=\left(x^2-6x+9\right)\left(x+1\right)^2=\left(x-3\right)^2\left(x+1\right)^2=\left[\left(x-3\right)\left(x+1\right)\right]^2\)
Phân tích đa thức thành nhân tử:
a) x 4 - 6 x 3 + 12 x 2 - 14x + 3.
b) x 4 + 6 x 3 + 7 x 2 -6x + l.
a) ( x 2 – 4x + 1)( x 2 – 2x + 3).
b) ( x 2 + 5x – 1)( x 2 + x – 1).
1/ Cho 2 đa thức:
P(x) =x4-7x2+x-2x3+4x2+6x-2
Q(x)=x4-3x-5x3+x+1+6x3
a/ Thu gọn rồi sắp xếp các đa thức trên theo lũy thừa giảm của biến
b/ Chứng minh: x=2 là nghiệm của P(x) nhưng không là nghiệm của Q(x)
GIÚP MÌNH VỚI MN ><
a) Thu gọn:
P(x) = x4+(-7x2+4x2)+(x+6x)-2x3-2
P(x) = x4-3x2+7x-2x3-2
Sắp xếp: P(x) = x4-2x3-3x2+7x-2
Thu gọn:
Q(x) = x4+(-3x+x)+(-5x3+6x3)+1
Q(x) = x4-2x+x3+1
Sắp xếp: Q(x)= x4+ x3-2x+1
b/ Nếu x=2, ta có:
P(2) = 24-2.23-3.22+7.2-2
= 16 - 2.8 - 3.4 + 14 -2
= 16-16-12+14-2
= -12+14-2
= 0
=> x=0 là nghiệm của P(x)
Q(2)= 24+ 23-2.2+1
= 16+8-4+1
= 24-4+1
=21
mà 21≠0
Vậy: x=2 không phải là nghiệm của Q(x)
=>
Bài 1:
Tính B=(5x4^15x9^9-4x3^20x8^9)/(5x2^9x6^19-7x2^29x27^6)
Chú ý:đây là phép tính phân số không phải là phép tính số tự nhiên
Bài 2:Cho S=3^0+3^2+3^4+3^6+...+3^2002
a)Tính S
b)Chứng minh S chia hết cho7
-------------------------------------hết------------------------------------
dấu nhân là "x"không phải là dấu chấm
Phần thưởng là 3 li-ke cho ai trả lời nhanh và chính xác nhất
Nhớ nhé!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Phân tích đa thức thành nhân tử : x4 + 6x3 + 7x2 – 6x + 1
\(x^4+6x^3+7x^2-6x+1\)
\(=x^4-2x^2+1+6x^3+9x^2-6x\)
\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)
\(=\left(x^2+3x-1\right)^2\)