Những câu hỏi liên quan
NA
Xem chi tiết
TH
24 tháng 9 2017 lúc 22:59

\(n^3-n=n\left(n^2-1\right)\)

\(=n\left(n-1\right)\left(n+1\right)=\left(n-1\right).n.\left(n+1\right)\)

Ta thấy n-1;n;n+1 là ba số tự nhiên liên tiếp

Mà tích của ba số tự nhiên liên tiếp luôn chia hết cho 6

Nên \(n^3-n\) luôn chia hết cho 6.

Tham khảo, chúc bạn học thật giỏi!

Bình luận (2)
MK
24 tháng 9 2017 lúc 23:00

\(n^3-n\)

\(=n\left(n^2-1\right)\)

\(=n\left(n+1\right)\left(n-1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\)

Dễ thấy: \(n-1;n;n+1\) là 3 số tự nhiên liên tiếp thì chia hết cho 6

Ta có đpcm

Bình luận (0)
KK
24 tháng 9 2017 lúc 23:07

Ý BẠN LÀ n3-n hay n3-n

Bình luận (0)
CM
Xem chi tiết
OK
Xem chi tiết
VC
Xem chi tiết
VC
2 tháng 7 2019 lúc 21:27

ta có : n(n+5)−(n−3)(n+2)=n2+5n−(n2+2n−3n−6)n(n+5)−(n−3)(n+2)=n2+5n−(n2+2n−3n−6)

=n2+5n−n2−2n+3n+6=6n+6=6(n+1)⋮6=n2+5n−n2−2n+3n+6=6n+6=6(n+1)⋮6

⇔6(n+1)⇔6(n+1) chia hết cho 66 với mọi n là số nguyên

⇔n(n+5)−(n−3)(n+2)⇔n(n+5)−(n−3)(n+2) chia hết cho 66 với mọi n là số nguyên

vậy n(n+5)−(n−3)(n+2)n(n+5)−(n−3)(n+2) chia hết cho 66 với mọi n là số nguyên (đpcm)

Bình luận (0)
JT
Xem chi tiết
DV
Xem chi tiết
PN
Xem chi tiết
NT
20 tháng 7 2019 lúc 15:03

a;\(aaa=111\cdot a\)

\(\Rightarrow aaa=3\cdot37\cdot a\)

\(\Rightarrow aaa⋮37\left(3a\inℕ\right)\)

Bình luận (0)
NT
20 tháng 7 2019 lúc 15:07

b;\(a\ge b;ab-ba=10a+b-10b-a\)

\(\Rightarrow ab-ba=9a-9b\)

\(\Rightarrow ab-ba=9\left(a-b\right)\)

\(\Rightarrow ab-ba⋮9\left(a\ge b\Rightarrow a-b\ge0\right)\)

Bình luận (0)
NT
20 tháng 7 2019 lúc 15:12

\(n\left(n+1\right)\)

*;\(n⋮2\Rightarrow n\left(n+1\right)⋮2\)

*;\(n⋮̸2\Rightarrow n+1⋮2\Rightarrow n\left(n+1\right)⋮2\)

Bình luận (0)
TL
Xem chi tiết
HN
Xem chi tiết
TH
28 tháng 8 2018 lúc 8:21

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

Bình luận (0)