Tìm a,b để đường thẳng y=ax+b ( a khác 0)đi qua :
1. A(2;3)vàB(-2;1)
2.M(-2;3)vàN(2;2)
3.E(3;-1)vàF(2;-3)
4.Q(2;-2)vafP(-3;1).
cho đường thẳng (d)y=ax+b(b khác 0).
a)tìm a biết rằng đường thẳng (d) đi qua 1 điểm A (1;2) và B (2;0)
b)vẽ ĐTHS y=ax+b và a,b vào tìm được ở câu a.
Cho (d): y = ax + b . Tìm a, b để đường thẳng (d) đi qua A(0; 1) và song song với đường thẳng (d') và hệ số góc của (d') là 2.
A. a = 1, b = 1
B. a = 1, b = 2
C. a = 2, b = 1
D. a = 2, b = 2
Đáp án C
Đường thẳng (d) đi qua A(0; 1) nên ta có: 1 = a.0 + b ⇒ b = 1
Mà đường thẳng (d) song song với đường thẳng (d') và hệ số góc của (d') là 2.
Khi đó ta có: a = 2
Vậy giá trị cần tìm là a = 2, b = 1
Cho hai đường thẳng y = -3 x + 2 và đường thẳng y = ax - 2 Tìm a để hai đường thẳng song song Tìm a để hai đường thẳng cắt nhau Tìm a biết đồ thị của hàm số y = ax - 2 đi qua điểm M (1: 0)
a: Để hai đường thẳng y=-3x+2 và y=ax-2 song song với nhau thì
\(\left\{{}\begin{matrix}a=-3\\2\ne-2\left(đúng\right)\end{matrix}\right.\)
=>a=-3
b: Để hai đường thẳng y=-3x+2 và y=ax-2 cắt nhau thì \(a\ne-3\)
c: Thay x=1 và y=0 vào y=ax-2, ta được:
a*1-2=0
=>a-2=0
=>a=2
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)
b:
1: Thay x=-1 và y=3 vào (d), ta được:
\(2\cdot\left(-1\right)-a+1=3\)
=>-a-1=3
=>-a=4
hay a=-4
Hệ số góc a của đường thẳng y=ax+b(a khác 0) đi qua 2 điểm A(1;1) và B(-1;-5) là
thay A(1;1) và B (-1;-5) zo
\(\hept{\begin{cases}1xa+b=1\\-1xa+b=-5\end{cases}}\)
=>\(\hept{\begin{cases}a=3\\b=-2\end{cases}}\)
tại sao v ạ??
Bài 1 :Giả sử đường thẳng (d) có phương trình y=ax+b . Xác định a,b để (d) đi qua hai điểm A(1;3) và B(-3;-1)
Bài 2 Cho hàm số y=x+m (d). Tìm các giá trị của m để đường thẳng (d)
1, Đi qua điểm A(1;2003)
2, Song song với đường thẳng x-y+3=0
Tìm a, b để đường thẳng y = ax + b đi qua hai điểm A (2; 1) và B (−2; 3)
A. a = − 1 2 ; b = 2
B. a = 1 2 ; b = 2
C. a = 2 ; b = − 1 2
D. a = − 1 2 ; b = 1
Thay tọa độ điểm A vào phương trình đường thẳng ta được 2a + b = 1
Thay tọa độ điểm B vào phương trình đường thẳng ta được −2a + b = 3
Từ đó ta có hệ phương trình
2 a + b = 1 − 2 a + b = 3 ⇔ b = 1 − 2 a − 2 a + 1 − 2 a = 3 ⇔ a = − 1 2 b = 1 − 2. − 1 2 ⇔ a = − 1 2 b = 2
Vậy a = − 1 2 ; b = 2
Đáp án: A
Tìm a và b để: Đường thẳng y = ax + b đi qua hai điểm A(-5; 3), B(3/2 ; -1)
Đường thẳng y = ax + b đi qua hai điểm A(-5; 3), B(3/2 ; -1) nên tọa độ của A và B nghiệm đúng phương trình đường thẳng.
*Điểm A: 3 = -5a + b
*Điểm B:
Khi đó a và b là nghiệm của hệ phương trình:
Vậy khi a = - 8/13 ; b = - 1/13 thì đường thẳng y = ax + b đi qua hai điểm A(-5; 3), B(3/2 ; -1).
Đường thẳng cần tìm là
Cho đường thẳng : y=ax+b (1)
Tìm a,b để đường thẳng (1) song song với đường thẳng y=5x+6 và đi qua điểm A(2;3)
Để đường thẳng: y=ax+b song song với đường thẳng: y=5x+6
\(\Rightarrow a=5;b\ne6\)
Vì đường thẳng: y=ax+b đi qua điểm A(2;3)
=> 2a+b=3\(\Rightarrow10+b=3\)=>b=-7(TM)
Vậy (a;b)=(5;-7)