3x4:(-x)2-5x3:x2+x:1/2x=0
Bài 3 : (2 điểm) Cho hai đa thức : A(x) = 2 x3 + 5 + x2 –3 x –5x3 –4
B(x) = –3x4 – x3 + 2x2 + 2x + x4 – 4–x2 .
a) Thu gọn 2 đa thức trên.
b) Tính H(x) = A(x) – B(x)
a) A(x) = 2x3 + 5 + x2 - 3x - 5x3 - 4
= 2x3 - 5x3 + x2 - 3x + 5 - 4
= -3x3 + x2 - 3x + 1
B(x) = -3x4 - x3 + 2x2 + 2x + x4 - 4 - x2
= -3x4 + x4 - x3 + 2x2 - x2 + 2x - 4
= -2x4 - x3 + x2 + 2x - 4
b)
H(x) = A(x) - B(x)
H(x) = (-3x3 + x2 - 3x + 1) - (-2x4 - x3 + x2 + 2x - 4)
= -3x3 + x2 - 3x + 1 + 2x4 + x3 - x2 - 2x + 4
= 2x4 - 3x3 + x3 + x2 - x2 - 3x - 2x + 1 + 4
= 2x4 - 2x3 -5x + 5
a) A(x)=(2x3-5x3) +(5-4) + x2- 3x
=-3x3+1+x2-3x
B(x)=(-3x4+x4) - x3+(2x2-x2) +2x - 4
=-2x4-x3+x2+2x - 4
b) A(x) - B(x) = (-3x3+1+x2-3x) - (-2x4-x3+x2+2x - 4)
= -3x3+1+x2-3x - 2x4+x3-x2-2x + 4
=(-3x3+x3) + (1+4) + (+x2-x2) + (-3x-2x) - 2x4
=-2x3 + 5 - 5x -2x4
Giá trị của biểu thức A= 3x5-3x4+5x3-x2+5x+2 tại x =-1
\(A=3x^5-3x^4+5x^3-x^2+5x+2\)
\(\text{Thay x=-1 vào biểu thức A,ta được:}\)
\(A=3.\left(-1\right)^5-3.\left(-1\right)^4+5.\left(-1\right)^3-\left(-1\right)^2+5.\left(-1\right)+2\)
\(A=3.\left(-1\right)-3.1+5.\left(-1\right)-1+5.\left(-1\right)+2\)
\(A=\left(-3\right)-3+\left(-5\right)-1+\left(-5\right)+2\)
\(A=\left(-6\right)+\left(-5\right)-1+\left(-5\right)+2\)
\(A=\left(-11\right)-1+\left(-5\right)+2\)
\(A=\left(-12\right)+\left(-5\right)+2\)
\(A=\left(-17\right)+2=-15\)
Thay x=-1 vào A ta có:
A= 3x5-3x4+5x3-x2+5x+2
= 3.(-1)5-3.(-1)4+5.(-1)3-(-1)2+5.(-1)+2
= 3.(-1)-3.1+5.(-1)-1+(-5)+2
= -3-3-5-1-5+2
=-15
Rút gọn biểu thức sau:
(5x3 – 4x2) : 2x2 + (3x4 + 6x) : 3x – x(x2 – 1)
(5x3 – 4x2) : 2x2 + (3x4 + 6x) : 3x – x(x2 – 1)
= 5x3 : 2x2 + (-4x2): 2x2 + 3x4 : 3x + 6x : 3x – [x. x2 + x . (-1)]
= (5:2) . (x3 : x2) + [(-4) : 2] . (x2 : x2) + (3 : 3) . (x4 : x) + (6 : 3). (x:x) – ( x3 – x)
= \(\dfrac{5}{2}\)x – 2 + x3 + 2 – x3 + x
= (x3 – x3) + (\(\dfrac{5}{2}\)x + x) + (-2 + 2)
= 0 + \(\dfrac{7}{2}\)x + 0
= \(\dfrac{7}{2}\)x
a) x2(x - 5) + 5 - x = 0; b) 3x4 - 9x3 = -9x2 + 27x;
c) x2(x + 8) + x2 = -8x; d) (x + 3)(x2 -3x + 5) = x2 + 3x.
e) 3x(x - 1) + x - 1 = 0;
f) (x - 2)(x2 + 2x + 7) + 2(x2 - 4) - 5(x - 2) = 0;
g) (2x - 1)2 - 25 = 0;
h) x3 + 27 + (x + 3)(x - 9) = 0.
i)8x3 - 50x = 0; k) 2(x + 3)-x2 - 3x = 0;
m)6x2 - 15x - (2x - 5)(2x + 5) =
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
1/Cho đa thức f(x) = 3x5 - 3x4 + 5x3 - x2 + 5x+ 2 . Vậy f(-1) bằng :
A. 0
B. -10
C. -16
D. Một kết quả khác
\(f\left(-1\right)=-3-3-5-1-5-2=-19\)
chọn D
Tính:
a) ( 5x3 - x - 1/2 )
b) ( 3xy - x2 + y ) 2/3 x2y
c) ( 4x3 - 5xy + 2x ) ( -1/2xy )
d) ( x2 - 2x + 1 ) ( x - 1)
`@` `\text {Ans}`
`\downarrow`
`a)`
`5x^3 - x - 1/2`
Đã thu gọn?
`b)`
`(3xy - x^2 + y) * 2/3x^2y`
`= 3xy * 2/3 x^2y - x^2* 2/3x^2y + y*2/3x^2y`
`= 2x^3y^2 - 2/3x^4y + 2/3x^2y^2`
`c)`
`(4x^3 - 5xy +2x) (-1/2xy)`
`= 4x^3* (-1/2xy) - 5xy* (-1/2xy) + 2x * (-1/2xy)`
`= -2x^4y + 5/2x^2y^2 - x^2y`
`d)`
`(x^2 - 2x +1) (x-1)`
`= x^2(x-1) - 2x(x-1) + x - 1`
`= x^3 - x^2 - 2x^2 + 2x + x -1`
`= x^3 -3x^2 + 3x - 1`
d: =(x-1)^3=x^3-3x^2+3x-1
c: =-2x^4y+5/2x^2y^2-x^2y
Cho hai đa thức
M(x) = x4 + 5x3 - x2 + x – 0,5
N(x) = 3x4 - 5x2 – x – 2,5.
Hãy tính M(x) + N(x) và M(x) – N(x).
Nhận xét: Đa thức M(x) và N(x) đã sắp xếp theo lũy thừa giảm dần của biến.
+) M(x) + N(x)
= (x4 + 5x3 - x2 + x – 0,5) + (3x4 - 5x2 – x – 2,5)
= x4 + 5x3 - x2 + x – 0,5 + 3x4 - 5x2 – x – 2,5
= (x4 + 3x4) + 5x3 + (- x2 - 5x2) + (x – x) + (-0,5 - 2,5)
= 4x4 + 5x3 – 6x2 – 3
Vậy M(x) + N(x) = 4x4 + 5x3 – 6x2 – 3
+) M(x) – N(x)
= (x4 + 5x3 - x2 + x – 0,5) - (3x4 - 5x2 – x – 2,5)
= x4 + 5x3 - x2 + x – 0,5 - 3x4 + 5x2 + x + 2,5
= (x4 - 3x4) + 5x3 + (-x2 + 5x2) + (x + x) + (-0,5 + 2,5)
= -2x4 + 5x3 + 4x2 + 2x + 2
Vậy M(x) - N(x) = -2x4 + 5x3 + 4x2 + 2x + 2
Cho hai đa thức
M(x) = x4 + 5x3 - x2 + x – 0,5
N(x) = 3x4 - 5x2 – x – 2,5.
Hãy tính M(x) + N(x) và M(x) – N(x).
Nhận xét: Đa thức M(x) và N(x) đã sắp xếp theo lũy thừa giảm dần của biến.
+) M(x) + N(x)
= (x4 + 5x3 - x2 + x – 0,5) + (3x4 - 5x2 – x – 2,5)
= x4 + 5x3 - x2 + x – 0,5 + 3x4 - 5x2 – x – 2,5
= (x4 + 3x4) + 5x3 + (- x2 - 5x2) + (x – x) + (-0,5 - 2,5)
= 4x4 + 5x3 – 6x2 – 3
Vậy M(x) + N(x) = 4x4 + 5x3 – 6x2 – 3
+) M(x) – N(x)
= (x4 + 5x3 - x2 + x – 0,5) - (3x4 - 5x2 – x – 2,5)
= x4 + 5x3 - x2 + x – 0,5 - 3x4 + 5x2 + x + 2,5
= (x4 - 3x4) + 5x3 + (-x2 + 5x2) + (x + x) + (-0,5 + 2,5)
= -2x4 + 5x3 + 4x2 + 2x + 2
Vậy M(x) - N(x) = -2x4 + 5x3 + 4x2 + 2x + 2
a)A=3x(2/3x2-3x4)+(3x2)(x3-1)+(-2+9).x2-12
b)B=x(2x3+x+2)-2x2(x2+1)+x2-2x+1
c)C=x.(2x+1)-x2(x+2)+x3-x+3
a, \(A=2x^3-9x^5+3x^5-3x^2+7x^2-12=-6x^5+2x^3+4x^2-12\)
b, \(B=2x^4+x^2+2x-2x^3-2x^2+x^2-2x+1=2x^4-2x^3+1\)
c, \(C=2x^2+x-x^3-2x^2+x^3-x+3=3\)
X : 1/2 = 2/3x4/5x3/4x15/8
x:1/2 = (2/3.3/4).4/5.15/8
x:1/2 = 6/12.60/40
x:1/2 = 1/2.3/2
x:1/2 = 3/4
x = 3/4.1/2
x = 3/8
(. là nhân nhé mik đánh máy sách tay nên ko có dấu nhân k mk nhé)