Cho x,y là các số nguyên dương thỏa mãn \(3x^2+x=4y^2+y\) .CMR x-y là một số chính phương.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x, y nguyên dương thỏa mãn: 3x² + x = 4y² + y Chứng minh rằng x - y là số chính phương
Từ giả thiết:
\(3x^2+x=4y^2+y\Leftrightarrow\left(3x-4y\right)^2=12x^2+12y^2-24xy+\left(x-y\right)\)
\(\Leftrightarrow\left(3x-4y\right)^2=12\left(x-y\right)^2+\left(x-y\right)=\left(x-y\right)\left[12\left(x-y\right)+1\right]\)
Hiển nhiên ta có \(12\left(x-y\right)+1\) và \(x-y\) nguyên tố cùng nhau
Mà tích của chúng là 1 SCP \(\Rightarrow\) cả 2 số đều phải là SCP
Hay \(x-y\) là SCP
Cho các số x, y nguyên dương, số nguyên tố p thỏa mãn 2p2 = x2 +y2. CMR 2p-x-y là số chính phương hoặc gấp 2 lần một số chính phương
Cho x,y là các số tự nhiên thỏa mãn 3x^2 + x= 4y^2 +y. Cmr 2xy +4(x+y)^3 +x^2+y^2 là số chính phương.
Giúp mik bài này nhé!!! cảm ơn nhiều:D
Cho các số nguyên dương x, y thỏa mãn \(x^2+y^2+2xy-2x+2y\) là một số chính phương. CM x=y
Cho 2 số nguyên dương x,y thỏa mãn \(x^2-4y+1⋮\left(x-2y\right)\left(2y-1\right)\). CMR \(|x-2y|\) là số chính phương
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
thtfgfgfghggggggggggggggggggggg
Cho các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
cmr : nếu x,y là các số nguyên thỏa mãn hệ thức
2^x2+x=3y^2+y
thì (x-y),(2x+2y+1) và (3x+3y+1) là các số chính phương
x,y nguyên dương thoả mãn x^2+y^2+4=2xy+4x+4y .chứng minh x/2 và y/2 là các số chính phương
\(x^2+y^2+4=2xy+4x+4y\)
\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)
Xét phương trình theo nghiệm x.
\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)
\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)
Vì x, y nguyên dương nên
\(\Rightarrow\sqrt{2y}=a\)
\(\Rightarrow y=2n^2\)
\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)
Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.
\(x^2+y^2+4=2xy+4x+4y\)
<=> \(\left(x^2-4x+4\right)+y^2-2y\left(x-2\right)=8y\)
<=> \(\left(x-y-2\right)^2=8y\)
<=> \(\left(\frac{x-y-2}{4}\right)^2=\frac{y}{2}\)
=> \(\frac{y}{2}\)là số chính phương
CMTT x/2 là số chính phương