\(\dfrac{1}{\sqrt{A}}\) xác định khi nào
\(\sqrt{\dfrac{1}{x^2}}\) x xác định khi nào
\(ĐK:\dfrac{1}{x^2}\ge0\left(luôn.đúng.do.1>0;x^2>0\right);x\ne0\\ \LeftrightarrowĐK:x\in R;x\ne0\)
\(\sqrt{\dfrac{4-2x}{x^2}}\) xác định khi nào
\(\sqrt{\dfrac{4-2x}{x^2}}\) có nghĩa thì \(\left\{{}\begin{matrix}4-2x\ge0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\le4\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ne0\end{matrix}\right.\)
Q=\(\dfrac{a}{\sqrt{a^2-b^2}}-\left(1+\dfrac{a}{\sqrt{a^2-b^2}}\right):\dfrac{b}{a-\sqrt{a^2-b^2}}\)
a) rút gọn Q
b) xác định giá trị của Q khi a=3b
a. \(Q=\dfrac{a}{\sqrt{a^2-b^2}}-\left(1+\dfrac{a}{\sqrt{a^2-b^2}}\right):\dfrac{b}{a-\sqrt{a^2-b^2}}\)
\(=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\dfrac{a-\sqrt{a^2-b^2}}{b}\)
\(=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{b}{\sqrt{a^2-b^2}}=\dfrac{a-b}{\sqrt{a^2-b^2}}=\dfrac{\sqrt{a-b}}{\sqrt{a+b}}\)
b. Thay \(a=3b\) vào \(Q\), ta được
\(Q=\dfrac{\sqrt{3b-b}}{\sqrt{3b+b}}=\dfrac{\sqrt{2b}}{\sqrt{4b}}=\dfrac{1}{\sqrt{2}}\)
Cho biểu thức A= (\(\dfrac{1}{x-\sqrt{x}}\) + \(\dfrac{1}{\sqrt{x}-1}\)) . \(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
a, Tìm điều kiện xác định để A có nghĩa
b, Rút gọn A
c, Tính A khi x=4
mình đang cần để tham khảo ạ :3
\(a,ĐK:x>0;x\ne1\\ b,A=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ c,x=4\Leftrightarrow\sqrt{x}=2\Leftrightarrow A=\dfrac{2-1}{2}=\dfrac{1}{2}\)
Cho P = \(\left(\dfrac{\sqrt{x}}{\sqrt{1}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x+1}}+\dfrac{2}{x-1}\right)\)
a) Tình điều kiện xác định và rút gọn biểu thức P ?
b) Tính giá trị của P khi x=\(2\sqrt{2}+3\)?
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
b: Thay \(x=3+2\sqrt{2}\) vào P, ta được:
\(P=\dfrac{2\sqrt{2}+2}{\sqrt{2}+1}=2\)
bài 1: tìm điều kiện xác định với giá trị nào của x thì các biểu thức sau đây xác định
a, \(\sqrt{-2x+3}\)
b, \(\sqrt{3x+4}\)
c, \(\sqrt{1+x\overset{2}{ }}\)
d, \(\sqrt{^{-3}_{3x+5}}\)
e, \(\sqrt{\dfrac{2}{x}}\)
help me :((
a/ ĐKXĐ : \(-2x+3\ge0\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
b/ ĐKXĐ : \(3x+4\ge0\)
\(\Leftrightarrow x\ge-\dfrac{4}{3}\)
c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x
d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5< 0\)
\(\Leftrightarrow x< -\dfrac{5}{3}\)
e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)
P.s : không chắc lắm á!
Cho biểu thức A=(\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : (\(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1x}\))
1.Tìm điều kiện xác định của biểu thức A.
2.Rút gọn A.
3.Tính giá trị biểu thức A khi x = \(\dfrac{1}{6-2\sqrt{5}}\).
4.Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
5.Tìm giá trị của x để biểu thức A bằng -3.
6.Tìm giá trị của x để biểu thức A nhỏ hơn -1.
7.Tìm giá trị của x để biểu thức A lớn hơn \(\dfrac{-2}{\sqrt{x}+1}\)
1) ĐKXĐ: \(x\notin\left\{0;1\right\}\)
2) Ta có: \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{x+\sqrt{x}+1-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\)
\(=2\cdot\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
1. với giá trị nào của x thì các biểu thức sau đây xác định
a,\(\sqrt{\dfrac{2}{x^2}}\)
b,\(\sqrt{\dfrac{-5}{x^2+6}}\)
Biểu thức \(\sqrt{\dfrac{-2}{x-1}}\) xác định khi
ĐKXĐ: \(-\dfrac{2}{x-1}>=0\)
=>x-1<0
=>x<1
Biểu thức \(\sqrt{\dfrac{x^2}{x+1}}\) xác định khi và chỉ khi
ĐKXĐ: \(\dfrac{x^2}{x+1}>=0\)
=>x+1>0
=>x>-1