Cho \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ca+1}{a}\). Chứng minh rằng a=b=c
cho a,b>0. Chứng minh rằng
\(\frac{2}{a^2+bc}+\frac{2}{b^2+ca}+\frac{2}{c^2+ab}\le\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\)
Bài này dùng AM-GM chắc cũng nhàm rồi nên em đổi kiểu nha.
\(VP-VT=\Sigma_{cyc}\frac{\left(ab+ac-2bc\right)^2+bc\left(b-c\right)^2}{2abc\left(b+c\right)\left(a^2+bc\right)}\ge0\)
Chứng minh rằng:
\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ca}=\frac{a-b}{1+ab}.\frac{b-c}{b+c}.\frac{c-a}{c+a}\)
Cho a, b, c là 3 số dương.
Chứng minh rằng: \(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT Cô-si cho 2 số dương \(\frac{a}{bc}\) và \(\frac{b}{ca}\) ta có
\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{abc^2}}=2.\frac{1}{c}\)
Làm tương tự ta được
\(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\)
\(\frac{b}{ac}+\frac{c}{ab}\ge\frac{2}{a}\)
Cộng theo từng vế rồi chia cho 2. Ta được BĐT cần chứng minh.
Cho: a,b,c > 0 và a + b + c = 3.
Chứng minh rằng:
a) \(\frac{a+b}{1+a}+\frac{b+c}{1+b}+\frac{c+a}{1+c}\ge ab+bc+ca\)
b) \(\frac{a}{ab+b^3}+\frac{b}{bc+c^3}+\frac{c}{ca+a^3}\ge\frac{3}{2}\)
Đề chơi căng nhỉ?
a) Dễ chứng minh VP =< 3
BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)
\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)
\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0
Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.
P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?
a, Ta có \(\frac{a+b}{a+1}=\frac{\left(a+b\right)\left(a+1\right)-a\left(a+b\right)}{a+1}=a+b-\frac{a\left(a+b\right)}{a+1}\)
Mà \(\frac{1}{a+1}\le\frac{a+1}{4a}\)
=> \(\frac{a+b}{1+a}\ge a+b-\frac{\left(a+1\right)\left(a+b\right)}{4}=\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}a^2-\frac{1}{4}ab\)
Khi đó
\(Vt\ge\frac{3}{2}\left(a+b+c\right)-\frac{1}{4}\left(a^2+b^2+c^2\right)-\frac{1}{4}\left(ab+bc+ac\right)\)
=> \(VT\ge\frac{9}{2}-\frac{1}{4}\left(9-2ab-2bc-2ac\right)-\frac{1}{4}\left(ab+bc+ac\right)\)
=> \(VT\ge\frac{9}{4}+\frac{1}{4}\left(ab+bc+ac\right)\)
Lại có \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)
=> \(VT\ge ab+bc+ac\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
b,Ta có \(\frac{a}{b\left(a+b^2\right)}=\frac{a+b^2-b^2}{b\left(a+b^2\right)}=\frac{1}{b}-\frac{b}{a+b^2}\)
Mà \(a+b^2\ge2b\sqrt{a}\)
=> \(\frac{a}{b\left(a+b^2\right)}\ge\frac{1}{b}-\frac{1}{2\sqrt{a}}\)
Lại có \(\frac{1}{\sqrt{a.1}}\le\frac{1}{2}\left(\frac{1}{a}+1\right)\)
=> \(\frac{a}{b\left(a+b^2\right)}\ge\frac{1}{b}-\frac{1}{4}.\left(\frac{1}{a}+1\right)\)
Khi đó
\(VT\ge\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)
=> \(VT\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
Bất đẳng thức được viết lại thành
\(\sum\frac{3-a}{1+a}\ge ab+bc+ca\)
Mà \(ab+bc+ca\le3\) nên ta chỉ cần chứng minh
\(\sum\frac{3-a}{1+a}\ge3\)
Ta chứng minh bất đẳng thức phụ sau
\(\frac{3-a}{1+a}\ge2-a\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)
Thiết lập các bất đẳng thức tương tự ta có điều phải chứng minh
Cho a; b; c > 0 sao cho a+b+c=3. Chứng minh rằng
\(\frac{a}{b^2\left(ca+1\right)}+\frac{b}{c^2\left(ab+1\right)}+\frac{c}{a^2\left(bc+1\right)}\ge\frac{9}{\left(1+abc\right)\left(ab+bc+ca\right)}\)
cho a,b,c là các số thực không âm thỏa mãn ab+bc+ca>0. Chứng minh rằng
\(\frac{1}{2a^2+bc}+\frac{1}{2b^2+ca}+\frac{1}{2c^2+ab}+\frac{1}{ab+bc+ca}\ge\frac{12}{\left(a+b+c\right)^2}\)
Em chỉ giải ra được 1 TH dấu bằng thôi: a = b = c (còn trường hợp a = b; c=0 và các hoán vị thì em chịu, vì khi xét dấu = trong bđt thì em chỉ xảy ra 1 th)
Áp dụng BĐT Cauchy-Schwarz dạng Engel;
\(VT\ge\frac{16}{a^2+b^2+c^2+\left(a+b+c\right)^2}\ge\frac{16}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)^2}\)\(=\frac{12}{\left(a+b+c\right)^2}\) (đpcm)
Đẳng thức xảy ra khi a = b = c
Cho a,b,c > 0 thỏa mãn a+b+c=1. Chứng minh rằng: \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Đề ra chưa hết kìa bạn.
Cho a, b, c là các số thực dương thoả mãn a+b+c=3. Chứng minh rằng:
\(\frac{a}{b^2\left(ca+1\right)}+\frac{b}{c^2\left(ab+1\right)}+\frac{c}{a^2\left(bc+1\right)}\ge\frac{9}{\left(1+abc\right)\left(ab+bc+ca\right)}\)
Theo bđt Cauchy - Schwart ta có:
\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)
\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)
Đặt \(ab+bc+ca=x;abc=y\).
Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)
\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )
Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1
sai rồi nhé bạn
làm sao mà \(x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\)lại luôn đúng
Cho x,y,z là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng :
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{1}{4}\left(1+\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\)
\(VT=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{1}{4}\left(\frac{ab}{a}+\frac{ab}{b}+\frac{bc}{b}+\frac{bc}{c}+\frac{ca}{c}+\frac{ca}{a}\right)\)
\(VT\le\frac{1}{4}\left(2a+2b+2c\right)=\frac{1}{2}\) (1)
Mặt khác \(\frac{bc}{a}+\frac{ac}{b}\ge2c\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\)
\(\Rightarrow2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge1\)
\(\Rightarrow VP=\frac{1}{4}\left(1+\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge\frac{1}{4}\left(1+1\right)=\frac{1}{2}\) (2)
Từ (1) và (2) suy ra đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)