\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\cdot\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
Tính:
\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\\ =\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\\ =\left(-\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+\sqrt{2}\right)\\ =\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)\\ =\left(3\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2=9.3-2=25\)
\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\)
\(=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=\left(3\sqrt{3}\right)^2-\sqrt{2}^2\)
\(=9.3-2=27-2=25\)
(\(\sqrt{32}-\sqrt{50}+\sqrt{27}\))(\(\sqrt{27}+\sqrt{50}-\sqrt{32}\))
= \(\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\)\(\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\)
= \(\left(3\sqrt{3}-\sqrt{2}\right)\)\(\left(3\sqrt{3}+\sqrt{2}\right)\)
= \(\left(3\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)
= 27 - 2 = 25
Tính :
\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\)
\(=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)\)
\(=27-2\)
\(=25\)
\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(\Leftrightarrow\left(4\sqrt{2}+3\sqrt{3}-5\sqrt{2}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(\Leftrightarrow\left(4\sqrt{2}+3\sqrt{2}-5\sqrt{2}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\)
\(\Leftrightarrow\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\)
\(\Leftrightarrow\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+2\right)\)
\(\Leftrightarrow\left(3\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)
\(\Rightarrow25\)
Vậy: BT = 25
P/s: từ dòng thứ 2 trở xuống bạn tự phân ... Vấn đề là ở bạn thôi :)))
\(=\left(\sqrt{27}\right)^2-\left(\sqrt{50}-\sqrt{32}\right)^2\)
\(=27-2=25\)
tính
1/\(2\sqrt{20}-\sqrt{50}+3\sqrt{80}\)\(-\sqrt{320}\)
2/\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(1,4\sqrt{5}-5\sqrt{2}+12\sqrt{5}-8\sqrt{5}=8\sqrt{5}-5\sqrt{2}\)
\(2,\left(\sqrt{27}+\sqrt{32}-\sqrt{50}\right)\left(\sqrt{27}-\sqrt{32}+\sqrt{50}\right)\)
\(=27-\left(\sqrt{32}-\sqrt{50}\right)^2=27-2=25\)
rút gọn
C = \(\sqrt{15-6\sqrt{6}}+\sqrt{33+12\sqrt{6}}\)
D=\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
F= \(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(C=\sqrt{15-6\sqrt{6}}+\sqrt{33+12\sqrt{6}}=\sqrt{9-2.3\sqrt{6}+6}+\sqrt{24+2.3.2\sqrt{6}+9}=3-\sqrt{6}+2\sqrt{6}+3=6+\sqrt{6}\) \(D=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{3-2\sqrt{3}+1}-\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\dfrac{2}{\sqrt{2}}=-\sqrt{2}\) \(F=\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=27-2=25\)
\(C=\sqrt{15-6\sqrt{6}}+\sqrt{33+12\sqrt{6}}=\sqrt{\left(\sqrt{9}-\sqrt{6}\right)^2}+\sqrt{\left(\sqrt{24}+\sqrt{9}\right)^2}=3-\sqrt{6}+2\sqrt{6}+3=6+\sqrt{6}\)
\(D=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(\Rightarrow\sqrt{2}D=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}-1-\sqrt{3}-1=-2\)
\(\Rightarrow D=-\dfrac{2}{\sqrt{2}}=-\sqrt{2}\)
\(F=\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=\left(3\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2=27-2=25\)
Bài 1: Tính và rút gọn biểu thức:
\(A=\left(\sqrt{5}+3\right)\left(5-\sqrt{15}\right)\)
\(B=\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(C=1-\left(\sqrt{45}-\sqrt{20}-\sqrt{3}\right)\left(\sqrt{20}-\sqrt{45}-\sqrt{3}\right)\)
\(D=\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{2}{3}}\right):\frac{1}{\sqrt{6}}\)
\(A=\left(\sqrt{5}+3\right)\left(5-\sqrt{15}\right)=5\sqrt{5}-5\sqrt{3}+15-3\sqrt{15}\)
Bạn ghi nhầm đề thì phải, ngoặc đầu là \(\sqrt{5}+\sqrt{3}\) mới rút gọn được theo HĐT số 3
\(B=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\)
\(=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=27-2=25\)
\(C=1-\left(3\sqrt{5}-2\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{5}-3\sqrt{5}-\sqrt{3}\right)\)
\(=1-\left(\sqrt{5}-\sqrt{3}\right)\left(-\sqrt{5}-\sqrt{3}\right)=1+\left(5-3\right)=3\)
\(D=\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{2}{3}}\right).\sqrt{6}=\frac{\left(3-2\right)}{\sqrt{6}}.\sqrt{6}=1\)
Rút gọn các biểu thức:
1. A=\(\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)
2. B= \(\left(\sqrt{45}+\sqrt{63}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
3. C= \(\left(\sqrt{5}+\sqrt{3}\right)\left(5-\sqrt{15}\right)\)
4. D= \(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
5. E= \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4\)
6. F= \(\left(\sqrt{15}-2\sqrt{3}\right)^2+12\sqrt{5}\)
\(1.A=\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)=5-4=1\)
\(2.B=\left(\sqrt{45}+\sqrt{63}\right)\left(\sqrt{7}-\sqrt{5}\right)=\left(3\sqrt{5}+3\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)=2\left(7-5\right)=4\) \(3.C=\left(\sqrt{5}+\sqrt{3}\right)\left(5-\sqrt{15}\right)=\sqrt{5}\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{5}\left(5-3\right)=2\sqrt{5}\) \(4.\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=27-2=25\) \(5.E=\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=4+2\sqrt{3}-2\sqrt{3}+4=8\)
\(6.F=\left(\sqrt{15}-2\sqrt{3}\right)^2+12\sqrt{5}=27-12\sqrt{5}+12\sqrt{5}=27\)
Các bạn giải gấp cho mk câu này nha . Mk đang cần rất gấp bạn nào giải đúng mk tick cho
Thực hiện phép tính , rút gọn biểu thức sau
\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
= ( 3 √3-√ 2) *( 3 √ 3 +√ 2)
=(3 √ 3)^2-2
=25
bạn có thể kt lại bằng máy tính
A = \(10-\left(\sqrt{32}-\sqrt{8}-\sqrt{27}\right)\left(\sqrt{8}-\sqrt{32}-\sqrt{27}\right)\)
\(A=10-\left(\sqrt{32}-\sqrt{8}-\sqrt{27}\right)\left(\sqrt{8}-\sqrt{32}-\sqrt{27}\right)\)
\(A=10-\left[-\sqrt{27}+\left(\sqrt{32}-\sqrt{8}\right)\right]\left[-\sqrt{27}-\left(\sqrt{32}-\sqrt{8}\right)\right]\)
\(A=10-\left[\left(-\sqrt{27}\right)^2-\left(\sqrt{32}-\sqrt{8}\right)^2\right]\)
\(A=10-\left(27-8\right)\)
\(A=-9\)
tính
A=\(\left(1-\sqrt{7}\right).\dfrac{\sqrt{7}+7}{2\sqrt{7}}\)
B=\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
C=\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
D=\(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
E=\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)
b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)
c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)
1. Rút gọn biểu thức:
\(D=\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
2. Thực hiện phép tính rồi rút gọn:
\(A=\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right).\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(B=1-\left(\sqrt{45}-\sqrt{20}-\sqrt{3}\right).\left(\sqrt{20}-\sqrt{45}-\sqrt{3}\right)\)
1.\(D=\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\frac{10\sqrt{3}}{3}\)\(=\frac{-17\sqrt{3}}{3}\)
2.\(A=27-\left(\sqrt{32}-\sqrt{50}\right)^2=25\)
\(B=1-\left(\left(-\sqrt{3}\right)^2-\left(\sqrt{20}-\sqrt{45}\right)^2\right)\)\(=1-\left(-2\right)=3\)