Những câu hỏi liên quan
TT
Xem chi tiết
NT
11 tháng 1 2023 lúc 9:22

Bài 3:

a: a*S=a^2+a^3+...+a^2023

=>(a-1)*S=a^2023-a

=>\(S=\dfrac{a^{2023}-a}{a-1}\)

b: a*B=a^2-a^3+...-a^2023

=>(a+1)B=a-a^2023

=>\(B=\dfrac{a-a^{2023}}{a+1}\)

Bình luận (0)
LL
Xem chi tiết
NT
10 tháng 1 2023 lúc 0:47

a: \(\dfrac{3}{4}A=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+...+\left(\dfrac{3}{4}\right)^{2021}\)

=>\(\dfrac{7}{4}\cdot A=\left(\dfrac{3}{4}\right)^{2021}+1\)

=>\(A\cdot\dfrac{7}{4}=\dfrac{3^{2021}+4^{2021}}{4^{2021}}\)

=>\(A=\dfrac{3^{2021}+4^{2021}}{4^{2020}\cdot7}\)

b: Vì 3^2021+4^2021 ko chia hết cho 4^2020*7 nên A ko là số nguyên

Bình luận (0)
VH
Xem chi tiết
SS
2 tháng 9 2019 lúc 11:26

ta có: a + b=-2 ; a^2 + b^2 = 52

=> (a+b)^2 = 4 => a^2 + 2ab + b^2 = 4

=> 52 + 2ab= 4

=> 48= -2ab

=> ab= -24

a^3 + b^3 = (a+b)( a^2-ab+ b^2)

=> a^3 + b^3 = -2.(52+24)= -2. 76= -152

Bình luận (0)
SS
Xem chi tiết
NT
Xem chi tiết
DH
8 tháng 8 2017 lúc 15:03

Dảnh àk =))

Bình luận (0)
H24
8 tháng 8 2017 lúc 15:36

Cứ đăng đi - úng hộ ^^

Bình luận (0)
NQ
Xem chi tiết
H24
9 tháng 7 2019 lúc 15:55

BĐT đồng bậc nên chuyển vế thẳng tiến ạ!:D Em ko chắc đâu nhá!

a) \(BĐT\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge a^3b^3+a^3b^3\)

\(\Leftrightarrow a^2b^4-a^3b^3+a^4b^2-a^3b^3\ge0\)

\(\Leftrightarrow a^2b^3\left(b-a\right)+a^3b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3b^2-a^2b^3\right)\ge0\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi a = b hoặc tồn tại một số bằng 0.

b) \(BĐT\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)

\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng do \(a^2+ab+b^2=a^2+2.a.\frac{b}{2}+\frac{b^2}{4}+\frac{3}{4}b^2=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2\ge0\) )

Đẳng thức xảy ra khi a = b

Bình luận (2)
H24
Xem chi tiết
NL
22 tháng 6 2017 lúc 16:24

Ta có

\(\frac{a+1}{a}=3\Leftrightarrow a+1=3a\Leftrightarrow2a=1\Leftrightarrow a=0,5.\)

Thay a=0,5 vào a^2+1/a^2 ta được

\(a^2+\frac{1}{a^2}=0,5^2+\frac{1}{0,5^2}=4,25\)

Làm tương tự với các câu còn lại

Bình luận (0)
H24
22 tháng 6 2017 lúc 16:25

cam on ban

Bình luận (0)
NL
22 tháng 6 2017 lúc 17:02

cam on cai gi, k đi

Bình luận (0)
NN
Xem chi tiết
TN
7 tháng 3 2018 lúc 18:23

\(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge2018\)

\(\Leftrightarrow\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge a+b+c\)

\(\LeftrightarrowΣ_{cyc}\frac{a^3\left(a-c\right)+b^3\left(b-c\right)}{a^3+b^3}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(a-b\right)\left(\frac{a^3}{c^3+a^3}-\frac{b^3}{b^3+c^3}\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\frac{c^3\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)\left(b+c\right)\left(b^2-bc+c^2\right)}\right)\ge0\)

BĐT cuối cùng liếc qua cũng biết thừa đúng :) nên ta có ĐPCM

Dấu "=" <=> a=b=c 

Ủng hô va` kb với mình nhé ^^

Bình luận (0)
AN
7 tháng 3 2018 lúc 13:23

Bài này làm dài lắm

Bình luận (0)
LH
Xem chi tiết
DY
Xem chi tiết