Violympic toán 9

NQ

Chứng minh hằng đẳng thức

a,(a^2+b^2)(a^4+b^4)≥(a^3+b^3)^2

b,(a+b)(a^3+b^3)≤2(a^4+b^4)

H24
9 tháng 7 2019 lúc 15:55

BĐT đồng bậc nên chuyển vế thẳng tiến ạ!:D Em ko chắc đâu nhá!

a) \(BĐT\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge a^3b^3+a^3b^3\)

\(\Leftrightarrow a^2b^4-a^3b^3+a^4b^2-a^3b^3\ge0\)

\(\Leftrightarrow a^2b^3\left(b-a\right)+a^3b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3b^2-a^2b^3\right)\ge0\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi a = b hoặc tồn tại một số bằng 0.

b) \(BĐT\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)

\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng do \(a^2+ab+b^2=a^2+2.a.\frac{b}{2}+\frac{b^2}{4}+\frac{3}{4}b^2=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2\ge0\) )

Đẳng thức xảy ra khi a = b

Bình luận (2)

Các câu hỏi tương tự
H24
Xem chi tiết
LT
Xem chi tiết
HA
Xem chi tiết
AD
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết