Bt: Cho x,y > 0 và x+y=1
Tìm gtnn của A= \(A=\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
Bài 1:Cho x>0;y>0 và \(x+y\le1\) tìm GTNNc của các bt sau
a,\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(b,B=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
Bà 2:Cho x+y=1 tìm GTNN của bt
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Bài 3:Cho x+y+z=3
a,Tìm GTNN của bt \(A=x^2+y^2+z^2\)
b,Tìm GTLN của bt \(B=xy+yz+xz\)
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
2/
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(1+\frac{4}{x+y}\right)^2}{2}=\frac{25}{2}\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Cho x, y > 0, x + y = 1. Tính GTNN của P = \(\frac{1}{x^2+y^2}+\frac{3}{4xy}+4xy\)
\(P=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)\)
\(\Rightarrow P\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{4xy}{4xz}}=\frac{4}{1^2}+4=8\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Tìm GTNN của:
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\text{ với }x>0;y>0\text{ và }x+y<1\)
Điểm rơi: \(x=y=\frac{1}{2}.\)
\(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{1}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)
\(=\frac{1}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\ge2+\frac{6}{1^2}=8\)
\(\text{Tìm GTNN của : }A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\text{ với }x;y>0\text{ và }x+y<1\)
Cho x,y là 2 số dương thỏa mãn x+y=1.Tìm GTNN của A =\(\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{3}{4xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+1=\frac{4}{\left(x+y\right)^2}+1=5\)
Dấu "=" xảy ra khi x=y=1/2
Đúng ko biết !?
Mọi người ơi giúp em với ạ. Em cần trước 16h thứ 4 ngày 22/7/2020 ạ. Dùng BĐT Cosy ạ. Cảm ơn mọi người nhiều ạ
1) Cho x,y>0 thỏa mãn x+y=1. Tìm GTNN của biểu thức \(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
2) Cho x,y>0 thỏa mãn \(x+y\le1\). Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
3) Cho a,b>0 thỏa mãn \(a+b\le1\).Tìm GTNN của biểu thức \(A=\frac{1}{a^2+b^2}+\frac{1}{b}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
1) có \(2y\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow\left(\sqrt{xy}+\frac{1}{4\sqrt{xy}}\right)^2+\frac{15}{16xy}+\frac{1}{2}\ge\frac{15}{16}\cdot4+\frac{1}{2}=\frac{17}{4}\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)
cho x.y.z > 0 thỏa mãn \(x+y+z=\frac{3}{2}\)
Tìm GTNN của \(A=\frac{\sqrt{x^2+xy+y^2}}{4yz+1}+\frac{\sqrt{y^2+yz+z^2}}{4xz+1}+\frac{\sqrt{z^2+xz+x^2}}{4xy+1}\)
@Akai Haruma
@Trần Thanh Phương
@HISINOMA KINIMADO
Cho x>0 y>0 và \(x+y\le1\) tìm GTNN của bt
\(Q=x^2+y^2+\frac{1}{x^2}+\frac{1}{\cdot y^2}\)
cho x,y >0 thỏa mãn x^2 +y^2=20 GTNN của bt p=\(\frac{1}{x^2}+\frac{1}{y^2}\)
P=20/(xy)^2
nhỏ nhất khi !xy! x,y>0=> xy lớn nhất
x^2+y^2>=2xy=> xy<=10 đẳng thức khi x=y=\(\sqrt{10}\)
Pmin=20/10=1/5
P=20/(xy)^2
nhỏ nhất khi !xy! x,y>0=> xy lớn nhất
x^2+y^2>=2xy=> xy<=10 đẳng thức khi x=y=\(\sqrt[]{10}\)
Pmin=20/10=1/5
:3