phân tích đa thức thành nhân tử
x^2-8x-5
Phân tích đa thức thành nhân tử
x^3-4x^2+8x-8
\(x^3-4x^2+8x-8=x^2\left(x-2\right)-2x\left(x-2\right)+4\left(x-2\right)=\left(x-2\right)\left(x^2-2x+4\right)\)
\(x^3-4x^2+8x-8\)
\(=\left(x-2\right)\left(x^2+2x+4\right)-4x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-2x+4\right)\)
Phân tích đa thức thành nhân tử
x^5+x+1
x^8+x+1
\(x^5+x+1\)
\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
Phân tích đa thức thành nhân tử
x^2+5x-36
\(x^2+5x-36=\left(x-4\right)\left(x+9\right)\)
Phân tích đa thức thành nhân tử
x^2-4y^2+x+2y
x2 - 4y2 + x + 2y
= ( x2 - 4y2 ) + ( x + 2y )
= ( x - 2y ) ( x + 2y ) + ( x + 2y )
= ( x + 2y ) ( x - 2y + 1 )
phân tích đa thức thành nhân tử
x^2(x-3)-4x+12
\(x^2\left(x-3\right)-4x+12=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
=x²(x-3)-4x+3.4
=x²(x-3)-4(x+3)
=x²(x-3)+4(x-3)
=(x-3)(x²+4)
=(x-3)(x²+2²)
=(x-3)(x-2)(x+2)
phân tích đa thức thành nhân tử
x^3 + 3x^2 − 4x − 12
\(=x^2\left(x+3\right)-4\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-4\right)\)
\(=\left(x+3\right)\left(x-2\right)\left(x+2\right)\)
phân tích đa thức thành nhân tử
x^2-6x+7
giúp em với ạ
\(=x^2-6x+9-2=\left(x-3\right)^2-2=\left(x-3-\sqrt{2}\right)\left(x-3+\sqrt{2}\right)\)
\(=\left(x^2-6x+9\right)-2=\left(x-3\right)^2-\sqrt{2^2}=\left(x-3-\sqrt{2}\right)\left(x-3+\sqrt{2}\right)\)
=x2−6x+9−2=(x−3)2−2=(x−3−√2)(x−3+√2)
Phân tích đa thức thành nhân tử
x^3-2xy-x^2y+2y^2
\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x^2-2y\right)\left(x-y\right)\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2y\right)\)
phân tích các đa thức sau thành nhân tử
x^2-9x-y^2-9y
\(x^2-9x-y^2-9y\)
\(=\left(x^2-y^2\right)-\left(9x+9y\right)\)
\(=\left(x-y\right)\left(x+y\right)-9\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-9\right)\)
phân tích đa thức thành nhân tử
x^2-16-y^2+8y
Thu gọn
2x(3x+1)+(x+3)(2x-5)
(x+5)^2-(4x-1)(4x+1)
Câu 1:
\(=x^2-\left(y-4\right)^2\)
\(=\left(x-y+4\right)\cdot\left(x+y-4\right)\)