Những câu hỏi liên quan
AT
Xem chi tiết
H24
22 tháng 11 2021 lúc 7:33

\(a.4\sqrt{2}+5\sqrt{2}-20\sqrt{2}+18\sqrt{2}=7\sqrt{2}\)

Bình luận (0)
NM
22 tháng 11 2021 lúc 7:34

\(a,=4\sqrt{2}+5\sqrt{2}-20\sqrt{2}+18\sqrt{2}=7\sqrt{2}\\ b,=\dfrac{3\left(\sqrt{2}+1\right)}{1}+\left|3-\sqrt{2}\right|-2\sqrt{2}\\ =3\sqrt{2}+3+3-\sqrt{2}-2\sqrt{2}=6\)

Bình luận (0)
DH
22 tháng 11 2021 lúc 8:41

`a)`

`\sqrt{32} + \sqrt{50} - 2\sqrt{200} + 3\sqrt{72}`

`= 4\sqrt{2} + 5\sqrt{2} - 20\sqrt{2} + 18\sqrt{2}`

`= (4 + 5 - 20 + 18) . \sqrt{2}`

`= 7\sqrt{2}`

`b)`

`3/(\sqrt{2} - 1) + \sqrt{(3 - \sqrt{2})^2} - 2\sqrt{2}`

`= (3 . (\sqrt{2} + 1))/1 + |3 - \sqrt{2}| - 2\sqrt{2}`

`= 3\sqrt{2} + 3 + 3 - \sqrt{2} - 2\sqrt{2}`

`= (3 - 1 - 2) . \sqrt{2} + 6`

`= 6`

Bình luận (0)
KG
Xem chi tiết
LH
26 tháng 7 2021 lúc 21:01

A=\(\left[\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+1\right)}{\left(a-1\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(a+\sqrt{a}\right)}{\left(a-1\right)}\right]\)::::::::\(\left(\dfrac{\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)

=\(\left[\dfrac{1}{\sqrt{a}-1}\right]:\left(\dfrac{2\sqrt{a}}{a-1}\right)\)=\(\dfrac{\sqrt{a}-1}{2\sqrt{a}}\)

=\(\dfrac{a^2+a\sqrt{a}+11a+6}{2\sqrt{a}\left(\sqrt{a}+2\right)}\)

Bình luận (2)
NT
26 tháng 7 2021 lúc 21:17

Ta có: \(A=\left(\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}+1-\sqrt{a}}{\sqrt{a}-1}:\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}-1}\cdot\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}\)

\(=\dfrac{\sqrt{a}+1}{2\sqrt{a}}\)

Bình luận (0)
KG
Xem chi tiết
MY
10 tháng 8 2021 lúc 20:00

\(x\ge0,x\ne9\)

\(A=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right]:\)

\(\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(A=\left[\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right].\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(A=\dfrac{-3\left(\sqrt{x}+1\right).\left(\sqrt{x}-3\right)}{\left(x-9\right)\left(\sqrt{x}+1\right)}=\dfrac{-3}{\sqrt{x}+3}\)

Bình luận (0)
NA
Xem chi tiết
BM
2 tháng 8 2019 lúc 9:19

\(1+\left(\frac{a+2\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\cdot\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)

\(=1+\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}+a\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\left(\frac{\left(1-\sqrt{a}\right)}{\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\frac{1-2\sqrt{a}+a-\sqrt{a}-a}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{1-2\sqrt{a}}\)

\(=1+\frac{\sqrt{a}}{\left(1+\sqrt{a}\right)}\)

\(=\frac{1+\sqrt{a}+\sqrt{a}}{1+\sqrt{a}}\)

\(=\frac{1+2\sqrt{a}}{1+\sqrt{a}}\)

Bình luận (0)
KG
Xem chi tiết
LH
26 tháng 7 2021 lúc 20:37

đk \(\left\{{}\begin{matrix}x\ne1\\x>0\end{matrix}\right.\)

A= \(\dfrac{-x\left(1+\sqrt{x}\right)}{\sqrt{x}\left(1-x\right)}\)+\(\dfrac{3\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-x\right)\sqrt{x}}\)+\(\dfrac{\left(6\sqrt{x}-4\right)\sqrt{x}}{\left(1-x\right)\sqrt{x}}\)

=\(\dfrac{-x-x\sqrt{x}+3\sqrt{x}-3x+6x-4\sqrt{x}}{\left(1-x\right)\sqrt{x}}\)

=\(\dfrac{-\left(x-2\sqrt{x}=1\right)}{1-x}\)=-\(\dfrac{\left(\sqrt{x}-1\right)^2}{1-x}\)=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Bình luận (0)
NT
26 tháng 7 2021 lúc 20:58

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3\sqrt{x}}{x+\sqrt{x}}+\dfrac{6\sqrt{x}-4}{1-x}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Bình luận (0)
NA
Xem chi tiết
PL
1 tháng 8 2019 lúc 19:10

\(đkxđ\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

\(A=\)\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\frac{\sqrt{a}.\sqrt{a}}{2\sqrt{a}}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{\left(a-1\right)^2}{\left(2\sqrt{a}\right)^2}\left(\frac{a-2\sqrt{a}+1-a-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{\left(a-1\right)^2.-4\sqrt{a}}{4a\left(a-1\right)}=\frac{a-1}{\sqrt{a}}\)

\(b,A< 0\Rightarrow\frac{a-1}{\sqrt{a}}< 0\)

Mà \(\sqrt{a}\ge0\Rightarrow a-1\le0\Rightarrow a\le1\)

\(A=2\Rightarrow\frac{a-1}{\sqrt{a}}=2\)

\(\Rightarrow a-1=2\sqrt{a}\Rightarrow a-2\sqrt{a}-1=0\)

\(\Rightarrow a-2\sqrt{a}+1-2=0\)

\(\Rightarrow\left(\sqrt{a}-1\right)^2-\sqrt{2}^2=0\)

\(\Rightarrow\left(\sqrt{a}-1-\sqrt{2}\right)\left(\sqrt{a}-1+\sqrt{2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=1+\sqrt{2}\\\sqrt{a}=1-\sqrt{2}\end{cases}\Rightarrow\orbr{\begin{cases}a=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\\a=\left(1-\sqrt{2}\right)^2=3-2\sqrt{2}\end{cases}}}\)

Bình luận (0)
BM
1 tháng 8 2019 lúc 20:58

\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1-\sqrt{a}-1\right)}{a-1}\)

\(=\frac{a-1}{4a}.\frac{2\sqrt{a}.\left(-2\right)}{1}\)

\(=\frac{a-1}{4a}.\frac{-4\sqrt{a}.}{1}\)

\(=\frac{1-a}{\sqrt{a}}\)

Bình luận (0)
HV
Xem chi tiết
KG
Xem chi tiết
NT
20 tháng 8 2021 lúc 21:45

Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\dfrac{3x+3\sqrt{x}}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)

\(=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)

Bình luận (0)
LL
20 tháng 8 2021 lúc 21:50

\(\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{9x-1}:\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}=\dfrac{3x+3\sqrt{x}-1}{9x-1}.\dfrac{3\sqrt{x}+1}{3}=\dfrac{3x+3\sqrt{x}-1}{9\sqrt{x}-3}\)

Bình luận (0)
NA
Xem chi tiết
H24
1 tháng 8 2019 lúc 15:54

a) \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}-1+1\)

\(=\frac{a^2-\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}\)

b) \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}=2\)

\(\Leftrightarrow a^2+\sqrt{a}.\left(a-\sqrt{a}+1\right)-2\sqrt{a}.\left(a-\sqrt{a}+1\right)=2\left(a-\sqrt{a}+1\right)\)

\(\Leftrightarrow a^2-2\sqrt{a}.a+2a-\sqrt{a}-2a=2a-2\sqrt{a}+2\)

\(\Leftrightarrow a^2-2\sqrt{a}.a+2a-\sqrt{a}-2a=-2\sqrt{a}+2\)

\(\Leftrightarrow-2\sqrt{a}.a+2a-\sqrt{a}-2a=-2\sqrt{a}+2-a^2\)

\(\Leftrightarrow-2\sqrt{a}.a-\sqrt{a}=-2\sqrt{a}+2-a^2\)

\(\Leftrightarrow-2a\sqrt{a}+\sqrt{a}=2-a^2\)

\(\Leftrightarrow\sqrt{a}.\left(2a+1\right)=2-a^2\)

\(\Leftrightarrow\left[\sqrt{a}.\left(2a+1\right)\right]^2=\left(2-a^2\right)^2\)

\(\Leftrightarrow4a^3-4a^2+a=4-4a^2+a^4\)

\(\Leftrightarrow\orbr{\begin{cases}a=4\left(\text{thỏa mãn}\right)\\a=1\left(\text{loại}\right)\end{cases}}\)

=> a = 4

Bình luận (0)
PL
1 tháng 8 2019 lúc 19:49

Cách ngắn hơn :

\(đkxđ\Leftrightarrow x\ge0\)

\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}\)\(-2\sqrt{a}-1+1\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}\)

\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)

\(b,A=2\Rightarrow a-\sqrt{a}=2\)

\(\Rightarrow a-\sqrt{a}-2=0\)

\(\Rightarrow a+\sqrt{a}-2\sqrt{a}-2=0\)

\(\Rightarrow\sqrt{a}\left(\sqrt{a}+1\right)-2\left(\sqrt{a}+1\right)=0\)

\(\Rightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=2\\\sqrt{a}=-1\end{cases}\Rightarrow\orbr{\begin{cases}a=4\\a\in\varnothing\end{cases}}}\)

\(\Rightarrow a=4\)

\(c,A=a-\sqrt{a}=\sqrt{a}^2-2.\sqrt{a}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)

\(=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\)

\(\Rightarrow A_{min}=-\frac{1}{4}\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\sqrt{a}=\frac{1}{2}\Rightarrow a=\frac{1}{4}\)

Vậy với \(a=\frac{1}{4}\)thì A có giá trị nhỏ nhất là \(-\frac{1}{4}\)

Bình luận (0)
H24
1 tháng 8 2019 lúc 19:51

Làm màu quá :))

Bình luận (0)
PN
Xem chi tiết
NT
12 tháng 9 2021 lúc 19:52

Ta có: \(P=\left(\dfrac{x+3\sqrt{x}}{x-25}+\dfrac{1}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(=\dfrac{x+3\sqrt{x}+\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

Bình luận (0)