\(\left(x-\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
Tìm x:
a) \(\dfrac{1}{3}.x+\dfrac{2}{5}\left(x-1\right)=0\)
b)\(-5.\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}.\left(x-\dfrac{2}{3}\right)=x\)
c)\(\left(x+\dfrac{1}{2}\right).\left(\dfrac{2}{3}-2x\right)=0\)
d)\(9.\left(3x+1\right)^2=16\)
a: =>1/3x+2/5x-2/5=0
=>11/15x-2/5=0
=>11/15x=2/5
=>x=2/5:11/15=2/5*15/11=30/55=6/11
b: =>-5x-1-1/2x+1/3=x
=>-11/2x-2/3-x=0
=>-13/2x=2/3
=>x=-2/3:13/2=-2/3*2/13=-4/39
c: (x+1/2)(2/3-2x)=0
=>x+1/2=0 hoặc 2/3-2x=0
=>x=1/3 hoặc x=-1/2
d: 9(3x+1)^2=16
=>(3x+1)^2=16/9
=>3x+1=4/3 hoặc 3x+1=-4/3
=>3x=1/3 hoặc 3x=-7/3
=>x=1/9 hoặc x=-7/9
GHPT: \(\left\{{}\begin{matrix}2x+\dfrac{1}{x+y}+\dfrac{1}{x-y}=\dfrac{16}{3}\\2\left(x^2+y^2\right)+\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(x-y\right)^2}=\dfrac{100}{9}\end{matrix}\right.\)
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{1}{x+y}+x-y+\dfrac{1}{x-y}=\dfrac{16}{3}\\\left(x+y\right)^2+\dfrac{1}{\left(x+y\right)^2}+\left(x-y\right)^2+\dfrac{1}{\left(x-y\right)^2}=\dfrac{100}{9}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{1}{x+y}+x-y+\dfrac{1}{x-y}=\dfrac{16}{3}\\\left(x+y+\dfrac{1}{x+y}\right)^2+\left(x-y+\dfrac{1}{x-y}\right)^2=\dfrac{136}{9}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x+y}=u\\x-y+\dfrac{1}{x-y}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u+v=\dfrac{16}{3}\\u^2+v^2=\dfrac{136}{9}\end{matrix}\right.\)
Hệ cơ bản, chắc bạn tự giải quyết phần còn lại được
Tìm MIN:
\(G=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
BT1: Khai triển
\(d,\left(x+2\right)\left(x^2-2x+4\right)\)
\(e,\left(\dfrac{1}{4}-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{20}+\dfrac{1}{16}\right)\)
d) \(\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)\left(x^2-2\cdot x+2^2\right)\)
\(=x^3+2^3\)
\(=x^3+8\)
e) \(\left(\dfrac{1}{4}-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{20}+\dfrac{1}{16}\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{5}x\right)\left(\dfrac{1}{25}x^2+\dfrac{1}{5}x\cdot\dfrac{1}{4}+\dfrac{1}{16}\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{5}x\right)\left[\left(\dfrac{1}{5}x\right)^2+\dfrac{1}{5}x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\right]\)
\(=\left(\dfrac{1}{4}\right)^3-\left(\dfrac{1}{5}x\right)^3\)
\(=\dfrac{1}{64}-\dfrac{1}{125}x^3\)
\(=\dfrac{1}{64}-\dfrac{x^3}{125}\)
d: (x+2)(x^2-2x+4)
=(x+2)(x^2-x*2+2^2)
=x^3+8
e: (1/4-x/5)(1/16+x/20+x^2/25)
=(1/4-x/5)[(1/4)^2+1/4*x/5+(x/5)^2]
=1/64-x^3/125
a.,\(\dfrac{4}{5}+5\dfrac{1}{2}\text{x }\left(4,5-2\right)=\dfrac{7}{10}\) b,125%x\(\dfrac{17}{4}:\left(1\dfrac{5}{16}-0,5\right)+2008\)
c,\(\dfrac{5}{11}+\left(\dfrac{16}{11}+1\right)\) d, \(\dfrac{3}{17}+\dfrac{11}{4}+\dfrac{5}{8}+\dfrac{14}{17}+\dfrac{3}{8}\)
`a)4/5+5 1/2 xx (4,5-2)+7/10`
`=4/5+11/2*2,5+7/10`
`=0,8+2,2+0,7`
`=3+0,7=3,7`
`b)125%xx 17/4:(1 5/16-0,5)+2008`
`=1,25xx4,25:13/16+2008`
`=85/13+2008`
`=2014 7/13`
`c)5/11+(16/11+1)`
`=5/11+1+5/11+1`
`=2+10/11=32/11`
`d)3/17+11/4+5/8+14/17+3/8`
`=3/17+14/17+5/8+3/8+11/4`
`=1+1+11/4`
`=19/4`
a)
\(\dfrac{4}{5}+5\dfrac{1}{2}x\left(4,5-2\right)=\dfrac{7}{10}\)
<=> \(\dfrac{11}{2}x\times2,5=\dfrac{7}{10}-\dfrac{4}{5}=\dfrac{-1}{10}\)
<=> \(\dfrac{55}{4}x=\dfrac{-1}{10}< =>x=\dfrac{-2}{275}\)
b) \(125\%\times\dfrac{17}{4}:\left(1\dfrac{5}{16}-0,5\right)+2008\)
= \(\dfrac{85}{16}:\left(\dfrac{21}{16}-\dfrac{1}{2}\right)+2008=\dfrac{85}{16}:\dfrac{13}{16}+2008=\dfrac{26189}{13}\)
c) \(\dfrac{5}{11}+\left(\dfrac{16}{11}+1\right)\)
= \(\dfrac{21}{11}+1=\dfrac{32}{11}\)
d) \(\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)+\dfrac{11}{4}\)
= 1 + 1 + \(\dfrac{11}{4}\) = \(\dfrac{19}{4}\)
tim x ϵ N* biết \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left[1+\dfrac{1}{x\left(x+2\right)}\right]=\dfrac{31}{16}\)
\(\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right).\left(1+\dfrac{1}{3.5}\right).........\left[1+\dfrac{1}{x.\left(x+2\right)}\right]=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}........\dfrac{\left(x+1\right)^2}{x.\left(x+2\right)}=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{\left[2.3.4.............\left(x+1\right)\right].\left[2.3.4.............\left(x+1\right)\right]}{\left(1.2.3...................x\right).\left(3.4.5..........................\left(x+2\right)\right)}=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{\left(x+1\right).2}{1.\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow16.2\left(x+1\right)=31.\left(x+2\right)\)
\(\Rightarrow32x+32=31x+62\)
\(\Rightarrow x=30\)
Vậy x=30
Chúc bn học tốt
ĐKXĐ: \(x\notin\left\{0;-2\right\}\)
Ta có: \(\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{1\cdot3+1}{1\cdot3}+\dfrac{1+2\cdot4}{2\cdot4}+\dfrac{1+3\cdot5}{3\cdot5}\cdot...\cdot\dfrac{1+x\left(x+2\right)}{x\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{2\cdot2}{1\cdot3}+\dfrac{3\cdot3}{2\cdot4}+\dfrac{4\cdot4}{3\cdot5}+...+\dfrac{\left(x+1\right)\left(x+1\right)}{x\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{1\cdot2\cdot3\cdot...\cdot\left(x+1\right)}{1\cdot2\cdot3\cdot...\cdot x}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot\left(x+1\right)}{3\cdot4\cdot5\cdot...\cdot\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow\left(x+1\right)\cdot\dfrac{2}{x+2}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{2x+2}{x+2}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{32x+32}{16\left(x+2\right)}=\dfrac{31\left(x+2\right)}{16\left(x+2\right)}\)
Suy ra: \(32x+32=31x+62\)
\(\Leftrightarrow x=30\)(thỏa ĐK)
Vậy: S={30}
Tìm MIN:
\(G=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
\(G=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
\(=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}+1+1\right)-\left(1+x^2y^2\right)^2-\dfrac{1}{2}\)
\(\ge x^4y^4+x^4y^4-\dfrac{3}{2}-2x^2y^2-x^4y^4\)
\(=x^4y^4-2x^2y^2-\dfrac{3}{2}=\left(x^2y^2-1\right)^2-\dfrac{5}{2}\ge-\dfrac{5}{2}\)
Dấu = xảy ra khi: \(x^2=y^2=1\)
Theo Cô si:\(\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)\ge\dfrac{1}{2}.2.\sqrt{x^8y^8}hay\ge x^4y^4\)
tương tự có \(\dfrac{1}{4}\left(x^{16}+y^{16}\right)\ge\dfrac{x^4y^4}{2}\)
Dấu = xảy ra ⇔ x= \(\pm y\)
Khi đó G = \(\dfrac{3}{2}x^4y^4-1-2x^2y^2-x^4y^4=\dfrac{1}{2}\left(x^4y^4-4x^2y^2+\text{4}\right)-3\)
G min = -3 khi \(x^4y^4-4x^2y^2+4=0\Leftrightarrow x^2y^2-2=0\) mà x=+-y suy ra x^4 =2 hay x=\(\pm\sqrt[4]{2}\)
Vậy có 4 cặp nghiệm thỏa mãn (x,y)=(\(\sqrt[4]{2},\sqrt[4]{2}\))\(\left(\sqrt[4]{2},-\sqrt[4]{2}\right),\left(-\sqrt[4]{2},\sqrt[4]{2}\right),\left(-\sqrt[4]{2},-\sqrt[4]{2}\right)\)
Cho các số x, y, z dương thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\)
Cmr: \(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2y+z+x\right)^2}+\dfrac{1}{\left(2z+x+y\right)^2}\ge\dfrac{3}{16}\)
Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!
Tìm x
1) \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\) 2) \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\) 3) \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
4) \(\left(\dfrac{4}{9}\right)^x=\left(\dfrac{8}{27}\right)^{10}\) 5) \(2^x=4^5.4^3\) help me !!!!
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
Giải phương trình
a) \(\dfrac{3}{5x-1}\)+ \(\dfrac{2}{3-5x}\)=\(\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
b) \(\dfrac{5-x}{4x^2-8x}\)+\(\dfrac{7}{8x}\)=\(\dfrac{x-1}{2x\left(x-2\right)}\)+\(\dfrac{1}{8x-16}\)
a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
=>3x-9-10x+2=-4
=>-7x-7=-4
=>-7x=3
=>x=-3/7
b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)
=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)
=>10-2x+7x-14=4x-4+x
=>5x-4=5x-4
=>0x=0(luôn đúng)
Vậy: S=R\{0;2}