Những câu hỏi liên quan
PP
Xem chi tiết
H9
4 tháng 9 2023 lúc 16:12

\(A=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\) (ĐK: \(x\ge0;x\ne\dfrac{1}{9}\))

\(A=\left[\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}\right)^2-1^2}\right]:\left[\dfrac{\left(3\sqrt{x}+1\right)\cdot1}{3\sqrt{x}+1}-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right]\)

\(A=\left[\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(A=\left[\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}-1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\dfrac{3}{3\sqrt{x}+1}\)

\(A=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)

\(A=\dfrac{3x+3\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)

\(A=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}\)

\(A=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)

Bình luận (3)
NT
4 tháng 9 2023 lúc 16:14

\(A=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right):\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+5\sqrt{x}+1}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)

\(=\dfrac{3x+3\sqrt{x}}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)

\(=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)

Bình luận (1)
H24
Xem chi tiết
VL
Xem chi tiết
NL
1 tháng 7 2021 lúc 10:26

a, ĐKXĐ : \(x\ge1\)

Ta có ; \(PT\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9}\sqrt{x-1}+24.\sqrt{\dfrac{1}{64}}\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}\left(\dfrac{1}{2}-\dfrac{3}{2}\sqrt{9}+24\sqrt{\dfrac{1}{64}}\right)=-17\)

\(\Leftrightarrow-\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x=290\left(TM\right)\)

Vậy ....

b, ĐKXĐ : \(x\ge3\)

Ta có : \(PT\Leftrightarrow x-3-7\sqrt{x-3}+12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\) ( TM )

Vậy ..

Bình luận (0)
NT
1 tháng 7 2021 lúc 10:29

a) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow-\sqrt{x-1}=-17\)

\(\Leftrightarrow x-1=17^2=289\)

hay x=290

Vậy: S={290}

b) Ta có: \(x-7\sqrt{x-3}+9=0\)

\(\Leftrightarrow x-7\sqrt{x-3}=-9\)

\(\Leftrightarrow x-3-2\cdot\sqrt{x-3}\cdot\dfrac{7}{2}+\dfrac{49}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow\left(\sqrt{x-3}-\dfrac{7}{2}\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\)

Vậy: S={19;12}

Bình luận (0)
H24
1 tháng 7 2021 lúc 10:31

\(ĐKXĐ:x\ge1\) 

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{3^2}{2}\sqrt{x-1}+\dfrac{24}{8}\sqrt{x-1}=-17\Leftrightarrow\dfrac{1}{2}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\) \(\Leftrightarrow-4\sqrt{x-1}+3\sqrt{x-1}=-17\Leftrightarrow-\sqrt{x-1}=-17\Leftrightarrow\sqrt{x-1}=17\Rightarrow x-1=289\Leftrightarrow x=290\left(TM\right)\) b \(ĐKXĐ:x\ge3\) 

\(\Leftrightarrow x-3-7\sqrt{x-3}+12=0\Leftrightarrow\left(\sqrt{x-3}-3\right)\left(\sqrt{x-3}-4\right)=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=3\\\sqrt{x-3}=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x-3=9\\x-3=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\left(TM\right)\\x=19\left(TM\right)\end{matrix}\right.\)

Bình luận (0)
TC
Xem chi tiết
NT
1 tháng 2 2021 lúc 22:37

Ta có: \(A=\sqrt{x}+1-\dfrac{17}{1-\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\dfrac{17}{\sqrt{x}-1}\)

\(=\dfrac{x-1+17}{\sqrt{x}-1}\)

\(=\dfrac{x+16}{\sqrt{x}-1}\)

Ta có: \(B=\dfrac{x-7}{x-4\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{x-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-7+\sqrt{x}-3-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\)

Ta có: P=A:B

\(\Leftrightarrow P=\dfrac{x+16}{\sqrt{x}-1}:\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\dfrac{x+16}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

\(\Leftrightarrow P=\dfrac{x+16}{\sqrt{x}+3}\)

Bình luận (2)
IP
1 tháng 2 2021 lúc 22:41

Vừa nhầm X+16 nha không phải x-16

undefined

Bình luận (0)
H24
1 tháng 2 2021 lúc 23:04

phần tìm GTN trong phần Bình luận bài của bạn Nguyễn Lê Phước Thịnh

Bình luận (0)
H24
Xem chi tiết
PK
Xem chi tiết
HD
26 tháng 7 2021 lúc 16:56

Bài 2 

b, `\sqrt{3x^2}=x+2`          ĐKXĐ : `x>=0`

`=>(\sqrt{3x^2})^2=(x+2)^2`

`=>3x^2=x^2+4x+4`

`=>3x^2-x^2-4x-4=0`

`=>2x^2-4x-4=0`

`=>x^2-2x-2=0`

`=>(x^2-2x+1)-3=0`

`=>(x-1)^2=3`

`=>(x-1)^2=(\pm \sqrt{3})^2`

`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$

`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$

Vậy `S={1+\sqrt{3};1-\sqrt{3}}`

Bình luận (1)
HD
26 tháng 7 2021 lúc 17:12

Bài 1 

a, `3x-7\sqrt{x}+4=0`            ĐKXĐ : `x>=0`

`<=>3x-3\sqrt{x}-4\sqrt{x}+4=0`

`<=>3\sqrt{x}(\sqrt{x}-1)-4(\sqrt{x}-1)=0`

`<=>(3\sqrt{x}-4)(\sqrt{x}-1)=0`

TH1 :

`3\sqrt{x}-4=0`

`<=>\sqrt{x}=4/3`

`<=>x=16/9` ( tm )

TH2

`\sqrt{x}-1=0`

`<=>\sqrt{x}=1` (tm)

Vậy `S={16/9;1}`

b, `1/2\sqrt{x-1}-9/2\sqrt{x-1}+3\sqrt{x-1}=-17`     ĐKXĐ : `x>=1`

`<=>(1/2-9/2+3)\sqrt{x-1}=-17`

`<=>-\sqrt{x-1}=-17`

`<=>\sqrt{x-1}=17`

`<=>x-1=289`

`<=>x=290` ( tm )

Vậy `S={290}`

 

Bình luận (1)
NT
26 tháng 7 2021 lúc 22:44

Bài 1: 

a) Ta có: \(3x-7\sqrt{x}+4=0\)

\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)

b) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}\cdot\left(-1\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

Bình luận (0)
H24
Xem chi tiết
H24
17 tháng 6 2023 lúc 14:56

Ta có :

\(A.B=\dfrac{24}{\sqrt{x}+6}.\dfrac{\sqrt{x}+6}{\sqrt{x}-6}\)

\(=\dfrac{24}{\sqrt{x}-6}\)

Để \(AB\le12\Leftrightarrow\dfrac{24}{\sqrt{x}-6}\le12\)

\(\Leftrightarrow\dfrac{24-12\left(\sqrt{x}-6\right)}{\sqrt{x}-6}\le0\)

\(\Leftrightarrow24-12\sqrt{x}+72\le0\)

\(\Leftrightarrow-12\sqrt{x}\le-96\)

\(\Leftrightarrow\sqrt{x}\ge8\)

\(\Leftrightarrow x\ge64\)

Vậy \(x\ge64\) thì \(AB\le12\)

Bình luận (0)
LG
Xem chi tiết
NT
30 tháng 8 2021 lúc 19:06

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

Bình luận (0)
NT
Xem chi tiết
AH
3 tháng 8 2021 lúc 16:38

a. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$

$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$

$\Leftrightarrow -\sqrt{x-1}=-17$

$\Leftrightarrow \sqrt{x-1}=17$

$\Leftrightarrow x-1=289$

$\Leftrightarrow x=290$

b. ĐKXĐ: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$

$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$

$\Leftrihgtarrow \sqrt{2x-1}=2$

$\Leftrightarrow x=2,5$ (tm)

 

Bình luận (0)
AH
3 tháng 8 2021 lúc 16:42

c. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm

Bình luận (0)
AH
3 tháng 8 2021 lúc 16:44

d. ĐKXĐ: $x>\frac{-2}{3}$

PT $\Leftrightarrow \sqrt{\frac{1}{3x+2}}-\frac{1}{2}\sqrt{9}.\sqrt{\frac{1}{3x+2}}+\sqrt{16}.\sqrt{\frac{1}{3x+2}}-5\sqrt{\frac{1}{4}}\sqrt{\frac{1}{3x+2}}=1$

$\Leftrightarrow \sqrt{\frac{1}{3x+2}}-\frac{3}{2}\sqrt{\frac{1}{3x+2}}+4\sqrt{\frac{1}{3x+2}}-\frac{5}{2}\sqrt{\frac{1}{3x+2}}=1$

$\Leftrightarrow \sqrt{\frac{1}{3x+2}}=1$

$\Leftrightarrow \frac{1}{3x+2}=1$

$\Leftrightarrow 3x+2=1$

$\Leftrightarrow x=-\frac{1}{3}$

Bình luận (0)
TT
Xem chi tiết
PL
8 tháng 8 2018 lúc 20:29

\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\left(x\text{ ≥}1\right)\)

\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(-\sqrt{x-1}=-17\)

\(x=290\left(TM\right)\)

KL..................

Bình luận (0)