Những câu hỏi liên quan
LN
Xem chi tiết
LN
13 tháng 6 2020 lúc 23:26

@Nguyễn Việt Lâm

Bình luận (0)
NL
13 tháng 6 2020 lúc 23:44

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

Bình luận (0)
LN
Xem chi tiết
NL
13 tháng 6 2020 lúc 17:19

BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)

Bình luận (0)
GS
Xem chi tiết
NP
16 tháng 8 2016 lúc 8:23

\(\hept{\begin{cases}x^2=yz\\y^2=xz\\z^2=xy\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{y}=\frac{z}{x}\\\frac{x}{y}=\frac{y}{z}\\\frac{z}{x}=\frac{y}{z}\end{cases}\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow x=y=z}\)

Bình luận (0)
GS
17 tháng 8 2016 lúc 22:26

lo x+y+z=0 thi sao

Bình luận (0)
CF
Xem chi tiết
NL
3 tháng 4 2021 lúc 23:11

Cần thêm điều kiện x;y;z đôi một phân biệt và để dấu "=" xảy ra khi thì x;y;z không âm chứ không phải dương

Không mất tính tổng quát, giả sử \(z=min\left\{x;y;z\right\}\Rightarrow xy+yz+zx\ge xy\)

\(\Rightarrow\dfrac{4}{xy+yz+zx}\le\dfrac{4}{xy}\)

Đồng thời: 

\(\left(z-x\right)^2=x^2+z\left(z-2x\right)\le x^2\Rightarrow\dfrac{1}{\left(z-x\right)^2}\ge\dfrac{1}{x^2}\) 

\(\left(y-z\right)^2=y^2+z\left(z-2y\right)\le y^2\ge\dfrac{1}{\left(y-z\right)^2}\ge\dfrac{1}{y^2}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow\dfrac{xy}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{xy}\ge4\)

\(\Leftrightarrow\dfrac{xy}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{xy}\ge2\) (hiển nhiên đúng theo AM-GM)

Bình luận (1)
H24
Xem chi tiết
NP
Xem chi tiết
TL
Xem chi tiết
OO
3 tháng 9 2017 lúc 14:05

Áp dụng BĐT Bunhiacốpxki dạng phân thức : x²/a + y²/b ≥ (x+y)²/(a+b) 
Ta có : 
3/(xy+yz+zx) + 2/(x²+y²+z²) = 6/(2xy+2yz+2zx) + 2/(x²+y²+z²) 
≥ (√6+√2)²/(x+y+z)² = (√6+√2)² > 14 (đpcm). 

Bình luận (0)
OO
3 tháng 9 2017 lúc 14:06
Cách 2 : Ta đặt xy+yz+zx = t ( t>0 ) thì x²+y²+z² = (x+y+z)² - 2(xy+yz+zx) = 1-2t. Mặt khác ta lại có: 3(xy+yz+zx) ≤ (x+y+z)² = 1 ⇔ xy+yz+zx ≤ 1/3 hay t ≤ 1/3. Ta đưa bài toán về việc c/m: 3/t + 2/(1-2t) ≥ 14 với 0 < t ≤ 1/3. Biến đổi tương đương ta được : 3(1-2t) + 2t ≥ 14t(1-2t) ⇔ 28t² - 18t + 3 ≥ 0 ⇔ 3(1-3t)² + t² ≥ 0 (đúng). Tuy nhiên dấu "=" không xảy ra, do đó 3/(xy+yz+zx) + 2/(x²+y²+z²) > 14.
Bình luận (0)
VC
3 tháng 9 2017 lúc 14:21

đề bài như sau

A=\(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}>14\)

ta có \(A=\frac{2}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2zx}+\frac{2}{xy+yz+zx}\)

     Áp dụng bất đẳng thức Svác sơ ta có 

\(\frac{2}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2xz}>=\frac{8}{x^2+y^2+z^2+2xy+2yz+2zx}\) \(=\frac{8}{\left(x+y+z\right)^2}=\frac{8}{1}=8\)(1)

mặt khác ta có Áp dụng bđt Cô si ta có \(x^2+y^2>=2xy\)\(y^2+z^2>=2yz\) ;  \(z^2+x^2>=2zx\) 

   =>  \(2\left(x^2+y^2+z^2\right)>=2\left(xy+yz+zx\right)\)

=> \(x^2+y^2+z^2+2xy+2yz+2zx>=3\left(xy+yz+zx\right)\)

=> \(\left(x+y+z\right)^2>=3\left(xy+yz+zx\right)\)

=> \(\left(xy+yz+zx\right)< =\frac{1}{3}\)

=> \(\frac{2}{xy+yz+zx}>=6\) (2)

từ (1) (2) 

=> A>=14

cậu tìm dấu = không xảy ra thì A>14 (ĐPCM)

Bình luận (0)
NV
Xem chi tiết
HK
17 tháng 6 2016 lúc 16:49

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

Bình luận (0)
DT
16 tháng 6 2016 lúc 22:25

bài của tui mà -_-

Bình luận (0)
NV
16 tháng 6 2016 lúc 22:30

hihi k biết làm nên đăng ^^

Bình luận (0)
MH
Xem chi tiết
H24
12 tháng 3 2017 lúc 23:25

solution:

ta có: \(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow xyz\le1\)(theo BĐT cauchy cho 3 số )

\(\Rightarrow xy\le\dfrac{1}{z};yz\le\dfrac{1}{x};xz\le\dfrac{1}{y}\)

\(\Rightarrow\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{x}{\dfrac{1}{\sqrt[3]{x}}}=x\sqrt[3]{x}=\sqrt[3]{x^4}\)

tương tự ta có:\(\dfrac{y}{\sqrt[3]{xz}}\ge\sqrt[3]{y^4};\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{z^4}\)

cả 2 vế các BĐT đều dương,cộng vế với vế:

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\)

Áp dụng BĐT bunyakovsky ta có:

\(\left(\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\right)\left(x^2+y^2+z^2\right)\ge\left(\sqrt[3]{x^8}+\sqrt[3]{y^8}+\sqrt[3]{z^8}\right)^2=\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow S\ge x^2+y^2+z^2\)

đến đây ta lại có BĐT quen thuộc: \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow S\ge xy+yz+xz\left(đpcm\right)\)

dấu = xảy ra khi và chỉ khi x=y=z mà x2+y2+z2=3 => x=y=z=1

*cách khác : Áp dụng BĐT cauchy - schwarz(bunyakovsky):

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}=\dfrac{x^4}{x^3.\dfrac{1}{\sqrt[3]{x}}}+\dfrac{y^4}{y^3.\dfrac{1}{\sqrt[3]{y}}}+\dfrac{z^4}{z^3.\dfrac{1}{\sqrt[3]{z}}}\)

\(S\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge xy+yz+xz\)

Bình luận (7)
PH
13 tháng 3 2017 lúc 14:02

cho mình hỏi vs ạ..

Khi mình nhập câu hỏi ý,, làm sao để gửi câu hỏi cho m.n xem để giải đk hả bạn,..Chỉ giùm mik vs ạ.

Bình luận (1)