chứng minh rằng phương trình:
\(x^3-mx+1=0\) luôn có nghiệm
Cho phương trình: x² - mx + m - 1 = 0(x là ẩn) a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m b) Tìm giá trị của m để phương trình có 2 nghiệm x1, x2 thoả mãn: x1 - 2x2 = 1
Chứng minh phương trình: \(\left|x\right|^3-2x^2+mx-1=0\) luôn có ít nhất 2 nghiệm phân biệt.
Cho phương trình \(x^2+mx+2m-4=0\).
a) Chứng minh rằng với mọi m, phương trình luôn có hai nghiệm.
b) Chứng minh rằng có một hệ thức giữa hai nghiệm của phương trình độc lập với m.
Phương trình luôn có nghiệm với mọi m
Cho phương trình bậc hai x^2-mx+m-3=0 Chứng minh rằng phương trình luôn có nghiệm với mọi m Tìm các giá trị m để phương trình có hai nghiệm x1 x2 sao cho bt A=2(x1+x2)-x1×x2) đạt giá trị nhỏ nhất
Ptr có:`\Delta=(-m)^2-4(m-3)=m^2-4m+12=(m-2)^2+8 > 0 AA m`
`=>` Ptr luôn có nghiệm `AA m`
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=m),(x_1.x_2=c/a=m-3):}`
Ta có:`A=2(x_1 ^2+x_2 ^2)-x_1.x_2`
`<=>A=2[(x_1+x_2)^2-2x_1.x_2]-x_1.x_2`
`<=>A=2[m^2-2(m-3)]-(m-3)`
`<=>A=2(m^2-2m+6)-m+3`
`<=>A=2m^2-4m+12-m+3=2m^2-5m+15`
`<=>A=2(m^2-5/2+15/2)`
`<=>A=2[(m-5/4)^2+95/16]`
`<=>A=2(m-5/4)^2+95/8`
Vì `2(m-5/4)^2 >= 0 AA m<=>2(m-5/4)^2+95/8 >= 95/8 AA m`
Hay `A >= 95/8 AA m`
Dấu "`=`" xảy ra`<=>(m-5/4)^2=0<=>m=5/4`
Vậy `GTN N` của `A` là `95/8` khi `m=5/4`
Đề liệu cs sai 0 bạn nhỉ, ở cái biểu thức `A` í chứ nếu đề vậy thì 0 tìm đc GTNN đâu (Theo mik thì là vậy)
chứng minh rằng với mọi m, phương trình \(\left(\sqrt{x-2}\right)^3+mx=2m+1\) luôn có một nghiệm lớn hơn 2
ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\left(\sqrt{x-2}\right)^3+m\left(x-2\right)=1\)
Đặt \(\sqrt{x-2}=t\ge0\)
\(\Rightarrow t^3+mt^2=1\Leftrightarrow t^3+mt^2-1=0\)
Đặt \(f\left(t\right)=t^3+mt^2-1\)
Hàm \(f\left(t\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{t\rightarrow+\infty}f\left(t\right)=\lim\limits_{t\rightarrow+\infty}\left(t^3+mt^2-1\right)=\lim\limits_{t\rightarrow+\infty}t^3\left(1+\dfrac{m}{t}-\dfrac{1}{t^3}\right)=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(t_0>0\) sao cho \(f\left(t_0\right)>0\)
\(\Rightarrow f\left(0\right).f\left(t_0\right)< 0\Rightarrow f\left(t\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;t_0\right)\) hay 1 nghiệm \(t>0\)
\(\Rightarrow\) Phương trình đã cho luôn có nghiệm \(x=2+t^2>2\)
Bài 1:
a/ Cho phương trình \(x^2+mx-2=0\). Chứng minh phương trình luôn có nghiệm ∀m.
b/ Tìm m để phương trình có 2 nghiệm x1, x2 thỏa \(x_1^2+x_1x_2+x^2_2=6\)
`a)ac=-2<0`
`=>Delta=b^2-4ac>0`
`=>` pt có 2 nghiệm pb `AAm`
b)ÁP dụng vi-ét ta có:`x_1+x_2=-m,x_1.x_2=-2`
`pt<=>(x_1+x_2)^2-x_1.x_2=6`
`<=>m^2+2=6`
`<=>m^2=4`
`<=>m=+-2`
1a) Ta có: \(ac=-2.1=-2< 0\) \(\Rightarrow\) pt luôn có 2 nghiệm phân biệt trái dấu với mọi m
b) Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-2\end{matrix}\right.\)
Theo đề: \(x_1^2+x_2^2+x_1x_2=6\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=6\)
\(\Rightarrow m^2+2=6\Rightarrow m^2=4\Rightarrow m=\pm2\)
Chứng minh rằng với mọi giá trị của m thì
phương trình \(\text{ }mx^2-\left(3m+2\right)x+1=0\) luôn có nghiệm
phương trình \(\left(m^2+5\right)x^2-\)\(\left(\sqrt{3}m-2\right)x+1=0\)luôn vô nghiệm
Chứng minh rằng phương trình: m x − 1 3 . ( x 2 − 4 ) + x 4 – 3 = 0 luôn có ít nhất hai nghiệm với mọi giá trị của tham số m
Xét hàm số f ( x ) = m x − 1 3 . ( x 2 − 4 ) + x 4 – 3 trên các đoạn [−2; 1], [1; 2]
Cho phương trình x2-mx-3=0(m là tham số)
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m
b) Gọi x1, x2là hai nghiệm của phương trình. Tìm m để (x1+6).(x2+6) = 2019
(mink đag cần gấp)
`a)ac=-3<0`
`=>b^2-4ac>0`
`=>` phương trình luôn có hai nghiệm phân biệt với mọi m
`b)` áp dụng vi-ét:`x_1+x_2=m,x_1.x_2=-3`
`(x_1+6).(x_2+6) = 2019`
`<=>x_1.x_2+6(x_1+x_2)+36=2019`
`<=>6m-3+36=2019`
`<=>6m+33=2019`
`<=>6m=1986`
`<=>m=331`
Vậy `m=331` thì `(x_1+6).(x_2+6) = 2019`