Bài 3: Hàm số liên tục

BT

chứng minh rằng với mọi m, phương trình \(\left(\sqrt{x-2}\right)^3+mx=2m+1\) luôn có một nghiệm lớn hơn 2

NL
22 tháng 3 2022 lúc 21:52

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\left(\sqrt{x-2}\right)^3+m\left(x-2\right)=1\)

Đặt \(\sqrt{x-2}=t\ge0\)

\(\Rightarrow t^3+mt^2=1\Leftrightarrow t^3+mt^2-1=0\)

Đặt \(f\left(t\right)=t^3+mt^2-1\)

Hàm \(f\left(t\right)\) là hàm đa thức nên liên tục trên R

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{t\rightarrow+\infty}f\left(t\right)=\lim\limits_{t\rightarrow+\infty}\left(t^3+mt^2-1\right)=\lim\limits_{t\rightarrow+\infty}t^3\left(1+\dfrac{m}{t}-\dfrac{1}{t^3}\right)=+\infty>0\)

\(\Rightarrow\) Luôn tồn tại 1 giá trị \(t_0>0\) sao cho \(f\left(t_0\right)>0\)

\(\Rightarrow f\left(0\right).f\left(t_0\right)< 0\Rightarrow f\left(t\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;t_0\right)\) hay 1 nghiệm \(t>0\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm \(x=2+t^2>2\)

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
SK
Xem chi tiết
PO
Xem chi tiết