cho tam giác ABC đường cao AH biết BC = 5 cm AH = 1 cm và BAC = 135 .Tính độ dài các cạnh AB , AC
Bài 1 Cho tam giác ABC vuông tại A có đường cao AH .biết BH = 9 cm ,HC = 16 cm .tính AH; AC ;số đo góc ABC (số đo góc làm tròn đến độ)
bài 2 Cho tam giác ABC vuông tại A , đường cao AH. biết AB = 3 cm ,AC = 4 cm. Tính độ dài các cạnh BC, AH và số đo góc ACB (làm tròn đến độ)
Bài 1:
AH=12cm
AC=20cm
\(\widehat{ABC}=37^0\)
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 2 cm và HC = 6 cm. Tính độ dài các đoạn AH, AB, AC.
Ta có : HB + HC = BC = 8 cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AB^2=BH.BC=2.8\Rightarrow AB=4cm\)
* Áp dụng hệ thức : \(AC^2=CH.BC=6.8\Rightarrow AC=4\sqrt{3}\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{16\sqrt{3}}{8}=2\sqrt{3}cm\)
Cho tam giác ABC, kẻ AH ⊥ BC. Biết AB = 5 cm, BH = 3 cm, BC = 8 cm. Tính độ dài các cạnh AH, HC, AC?
Xét \(\Delta ABH\)vuông tại H ta có :
\(AB^2+BH^2=AH^2\)(định lí Pitago)
=> \(AH^2=AB^2-BH^2\)
=> \(AH^2=5^2-3^2\)
=> \(AH^2=25-9=16\)
=> \(AH=4\left(cm\right)\)
Ta có : \(BH+HC=BC\)
=> \(3+HC=8\)
=> \(HC=5\left(cm\right)\)
Xét \(\Delta AHC\)vuông tại H ta có :
\(AH^2+HC^2=AC^2\)
=> \(4^2+5^2=AC^2\)
=> \(16+25=AC^2\)
=> \(AC^2=41\)
=> \(AC=\sqrt{41}\)(vì AC > 0)
Cho tam giác ABC biết AH vuông góc với BC biết AB = 5 cm BH = 3 cm BC = 8 cm Tính độ dài các cạnh AH HC và AC
Vì H ∈∈ BC nên ta có :
BC = BH + HC => 8 = 3 + HC
=> HC = 8 - 3 => HC = 5 cm
Áp dụng định lý pytago vào :
+) ΔABH ta có: AB^2 = BH^2 + AH^2 => AH^2 = AB^2 - BH^2
=> AH^2 = 562 - 3^2 => AH^2 = 25 - 9
=> AH^2 = 16 => AH = 4cm (do AH > 0cm )
+) ΔAHC có : AC^2 = AH^2 + HC^ 2 => AC ^2 = 4^2 + 5^2
=> AC^2 = 16 + 25 => AC^2 = 41
=> AC = \(\sqrt{41}cm\left(do\right)AC>0cm\)
Vậy AH = 4 cm ; HC = 5 cm ; AC = \(\sqrt{41}\)
Học tốt
HÌNH VẼ NÈK
Bài 1: cho tam giác ABC vuông tại A, đường cao AB, đường phân giác BD. Gọi M là giao điểm của AH và BD
a) CM △BAC đồng dạng △BHA
b) tính độ dài đoạn thẳng BC, AH, HB, HC. Biết AB = 3cm, AC = 4cm
c) chứng minh AM.ad = HM.CD
Bài 2: Cho tam giác ABC vuông góc tại A có AB = 12cm, AC = 16cm. Kẻ đường cao AH (HϵBC)
a) chứng minh △AHB đồng dạng △CAB
b) vẽ đường phân giác AD, (DϵBC). Tnhs BD, CD
Bài 3: cho tam giác ABC có AB = 8cm, AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm
a) tính các tỉ số \(\dfrac{AE}{AD}\);\(\dfrac{AD}{AC}\)
b) chứng minh △ADE đồng dạng △ABC
c) đường phân giác BAC cắt BC tại I. Chứng minh IB.AE = IC.AD
3:
a: AE/AD=9/6=3/2
AD/AC=6/12=1/2
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng vơi ΔABC
c: IB/IC=AB/AC=AD/AE
=>IB*AE=IC*AD
4. a)Tính cạnh góc vuông của một tam giác vuông cân có cạnh huyền bằng a.
b) Tính cạnh của một tam giác đều có đường cao bằng h.
5. Cho tam giác nhọn ABC, đường cao AH = 12 cm, AB = 13 cm, HC = 16 cm. Tính các độ dài AC, BC.
4:
a: Gọi độ dài cạnh góc vuông cần tìm là x
Theo đề, ta có: x^2+x^2=a^2
=>2x^2=a^2
=>x^2=a^2/2=2a^2/4
=>\(x=\dfrac{a\sqrt{2}}{2}\)
b:
Độ dài cạnh là;
\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)
5:
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>13^2=12^2+HB^2
=>HB=5cm
BC=5+16=21cm
ΔAHC vuông tại H
=>AH^2+HC^2=AC^2
=>AC^2=16^2+12^2=400
=>AC=20(cm)
Cho tam giác ABC biết BC = 7,5 cm , AC = 4,5 cm , AB = 6cm
a) ABC là tam giác gì ? Tính đường cao AH của ABC
b) Tính độ dài các cạnh BH , HC
Cho tam giác ABC vuông tại A có đường cao AH . Hãy tính độ dài các đoạn BC,AH,BH,CH , nếu biết :
1, AB =12 cm , AC= 9cm
2, AB = \(\sqrt{2}\) cm , AC = \(\sqrt{2}\) cm
1: \(BC=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\)
CH=5,4(cm)
2: \(BC=\sqrt{2+2}=2\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=1\left(cm\right)\)
\(BH=CH=AH=1\left(cm\right)\)
cho tam giác ABC vuông tại A (AB<AC) đường cao AH(H thuộc BC). Biết BC = 12 cm , DE= 17 cm
a) chứng minh tam giác BHA đồng dạng tam giác BAC . Tính độ dài AB và AH
b) gọi M là trung điểm BC đường thẳng qua M vuông góc với BC cắt AC tại D. tính diện tích tam giác MCD
Cho tam giác ABC đường cao AH biết AB = căn 3 cm, AC =1cm. Tính độ dài các đọa BC, AH, BH, CH
Áp dụng Pytago \(BC=\sqrt{AB^2+AC^2}=\sqrt{4}=2\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot CH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,5\left(cm\right)\\CH=\dfrac{AC^2}{BC}=0,5\left(cm\right)\\AH=\sqrt{1,5\cdot0,5}=\dfrac{\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)