số a thoã mãn
\(\frac{a}{3}=\frac{2a+2}{5}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giá trị a thoã mãn
\(\frac{a}{3}=\frac{2a+2}{5}\)
\(\frac{a}{3}=\frac{2a+2}{5}\)
\(\Rightarrow3\left(2a+2\right)=5a\)
\(\Rightarrow6a+6=5a\)
\(\Rightarrow a=6\)
Vậy a = 6
Ta có: \(\frac{a}{3}=\frac{2a+2}{5}\)
=> 5a=3(2a+2)
=> 5a=6a+6
=> 6=5a-6a
=> 6=-a
=> a=-6
Vậy a=-6
\(\frac{a}{3}=\frac{2a+2}{5}\)a
\(\frac{a}{3}=\frac{2a+2}{5}\)
\(\Rightarrow5a=6a+6\)
\(5a-6a=6\)
\(-a=6\)
\(\Rightarrow a=-6\)
1/Số cặp số tự nhiên (a;b) thoã mãn : a/2+b/3=a+b/5
Số cặp số tự nhiên (x;y) thoã mãn \(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)là......cặp
= 6 cặp
mk làm trong violympic rùi tin mk đi
cho 2 số a,b thoã mãn\(\frac{a}{b}=\frac{-4}{5}\)và a2+2b2=16,5
giá trị lớn nhất của a+b là :
a/b=-4/5
nên a/-4=b/5
Đặt a/-4=b/5=k
=>a=-4k; b=5k
\(a^2+2b^2=16.5\)
\(\Leftrightarrow16k^2+50k^2=16.5\)
\(\Leftrightarrow k^2=\dfrac{1}{4}\)
Trường hợp 1: k=1/2
=>a=-2; b=5/2
=>a+b=1/2
Trường hợp 2: k=-1/2
=>a=2; b=-5/2
=>a+b=-1/2
Vậy: Giá trị lớn nhất của a+b là 1/2
Cho 3 số dương a, b, c thoã mãn a+b+c=1. Chứng minh rằng:
\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ac}}\le\frac{3}{2}\)
Do \(a+b+c=1\) nên :
\(VT=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\frac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\frac{ca}{b\left(a+b+c\right)+ac}}\)
\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)
Áp dụng BĐT AM - GM :
\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{c+a}\right)\)
\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)
Cộng theo vế :
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
Cho \(a,b,c\inℝ\) thoã mãn \(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)
Tính \(A=\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)
Ta có: \(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)
Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\Leftrightarrow\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{\left(a+b+c\right)2}{a+b+c}=2\).Do:
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=2\) nên:
\(\Rightarrow3a-b=2c\) (1)
\(\Rightarrow3b-c=2a\) (2)
\(\Rightarrow3c-a=2b\)(3)
Thế (1) ; (2) ; (3) vào A. Ta có:
\(\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)
\(\Leftrightarrow A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)
\(\Leftrightarrow A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\). Do: \(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\Rightarrow\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=\left(-1\right)\)
\(\Leftrightarrow A=\left(-1\right)+\left(-1\right)+\left(-1\right)=\left(-3\right)\)
P/s: Mình không chắc nên nếu sai thì bạn thông cảm nha
Mình làm thử các bạn xem có đúng ko nhé
Ta có :
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3a+3b+3c-a-b-c}{a+b+c}\)
\(=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}=\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=\frac{2}{1}=2\)
Do đó :
\(\frac{3a-b}{c}=2\)\(\Rightarrow\)\(3a-b=2c\)\(\left(1\right)\)
\(\frac{3b-c}{a}=2\)\(\Rightarrow\)\(3b-c=2a\)\(\left(2\right)\)
\(\frac{3c-a}{b}=2\)\(\Rightarrow\)\(3c-a=2b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào A ta có :
\(A=\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)
\(A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)
\(A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(A=-3\)
Vậy \(A=-3\)
Nếu đúng thì thui, sai thì đừng có k sai cho mình nha :)
Bài 1;Cho x,y thoã mãn 0<x<1 ; 0<y<1 và \(\frac{x}{1-x}+\frac{y}{1-y}=1\)tính P=\(x+y+\sqrt{x^2-xy+y^2}\)
Bài 2 : Cho 3 số dương a,b,c thoã mãn \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)Chứng minh rằng \(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Bài 3 cho các số a,b,c,d dương thoã mãn \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)Chứng minh rằng \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
Tìm x thoã mãn:
\(\frac{5}{9}-1\frac{2}{9}x=\frac{2}{3}-\frac{15}{9}x\)
\(\frac{5}{9}-1^2_9x=\frac{2}{3}-\frac{15}{9}z\)
\(\frac{15}{9}x-\frac{11}{9}x=\frac{2}{3}-\frac{5}{9}\)
\(\frac{4}{9}x=-\frac{1}{9}\)
\(x=-\frac{1}{4}\)
Câu 1: Cho A= \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)B=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{35}}\)
Chứng minh A<B
Câu 2: Tính A=\(\sqrt[3]{\frac{X^3-3X+\left(X^2-1\right)\sqrt{X^2-4}}{2}}+\sqrt[3]{\frac{X^3-3X+\left(X^2-1\right)\sqrt{X^2-4}}{2}}\)Với x=\(\sqrt[3]{2017}\)
Câu 3: Cho hai số thực x và y thoã mãn \(\left(\sqrt{X^2+1}+X\right)\left(\sqrt{Y^2+1}+Y\right)=1\)Tính x+y
Câu 4: Trục căn thức mẫu số A= \(\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
Câu 5 : Gọi a là nghiệm nguyên dương của Phương trình \(\sqrt{2}X^2+X-1=0\)Không giải pt tính
C=\(\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
Tìm tất cả các cặp số nguyên tố a, b khác nhau đôi một thoã mãn:
\(\frac{1}{6}<\frac{1}{a}+\frac{1}{b}<\frac{1}{5}\)