CMR \(cos36^o=\dfrac{\sqrt{5}+1}{4}\)
CMR: \(\dfrac{4}{\sqrt{5}-1}+\dfrac{3}{\sqrt{5}-2}+\dfrac{16}{\sqrt{5}-3}=-5\)
\(\dfrac{4}{\sqrt{5}-1}+\dfrac{3}{\sqrt{5}-2}-\dfrac{16}{3-\sqrt{5}}\)
\(=\sqrt{5}+1+3\sqrt{5}+6-12-4\sqrt{5}\)
=-5
CMR:
\(\dfrac{\sqrt[4]{5}+1}{\sqrt[4]{5}-1}=\sqrt[4]{\dfrac{3+2\sqrt[4]{5}}{3-2\sqrt[4]{5}}}\)
CMR:\(\dfrac{1}{1+\sqrt{3}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+\dfrac{1}{\sqrt{9}+\sqrt{11}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}>\dfrac{9}{4}\)
CMR:
\(\dfrac{1}{1+\sqrt{2}}\)+\(\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{5}+\sqrt{6}}+....+\dfrac{1}{\sqrt{79}+\sqrt{80}}>4\)
Lời giải:
Đặt biểu thức đã cho là $A$
Ta có:
\(\frac{1}{1+\sqrt{2}}+\frac{1}{1+\sqrt{2}}> \frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\)
\(\Rightarrow \frac{1}{1+\sqrt{2}}> \frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
Hoàn toàn TT: \(\frac{1}{\sqrt{3}+\sqrt{4}}> \frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)\)
.......
\(\frac{1}{\sqrt{79}+\sqrt{80}}> \frac{1}{2}\left(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
Cộng các bđt trên lại với nhau:
\(\Rightarrow A> \frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
\(A> \frac{1}{2}\left(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{81}-\sqrt{80}}{81-80}\right)\) (liên hợp)
\(A> \frac{1}{2}> (\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{81}-\sqrt{80})\)
\(A> \frac{1}{2}(\sqrt{81}-1)=4\) (đpcm)
CMR: \(\dfrac{\sqrt{4+\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{2}}=1\)
Đề bài đúng: \(\dfrac{\sqrt{4-\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{2}}=1\)
Hoặc: \(\dfrac{\sqrt{4+\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}}=1\)
\(=\dfrac{\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)}{2}=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}=\dfrac{5-3}{2}=1\)
\(\dfrac{\sqrt{4-\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{2}}=\dfrac{\sqrt{8-2\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)}{2}\)
\(=\dfrac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\left(\sqrt{5}+\sqrt{3}\right)}{2}=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{2}=\dfrac{5-3}{2}=1\)
4.
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)-\left(\dfrac{1}{x+\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)
a. Rút gọn A.
b. Tính x khi \(A=\dfrac{1}{2}\)
5. CMR
\(\left(\dfrac{\sqrt{30}}{\sqrt{3}}-\dfrac{\sqrt{20}}{\sqrt{2}}-\dfrac{6}{\sqrt{6}}\right).\sqrt{4+\sqrt{15}}=2\)
nhanh lên nha
1a) 6\(\sqrt{3}\) - 5\(\sqrt{12}\) + 3\(\sqrt{75}\)
b) 2\(\sqrt{5}\) - \(\dfrac{1}{4}\) \(\sqrt{80}\) + 7\(\sqrt{500}\)
c) \(\dfrac{sin43^o}{cos47^o}\) + tan45o
d) \(\dfrac{tan32^o}{tan68^o}\) - cos30o - \(\dfrac{sin18^o}{sin82^o}\)
\(a,=6\sqrt{3}-10\sqrt{3}+15\sqrt{3}=11\sqrt{3}\\ b,=2\sqrt{5}-\sqrt{5}+70\sqrt{5}=71\sqrt{5}\\ c,=\dfrac{\sin43^0}{\sin43^0}+1=1+1=2\\ d,Sửa:\dfrac{\tan32^0}{\cot68^0}-\cos30^0-\dfrac{\sin18^0}{\sin82^0}=\dfrac{\tan32^0}{\tan32^0}-\dfrac{\sqrt{3}}{2}-\dfrac{\sin18^0}{\cos18^0}=1-1-\dfrac{\sqrt{3}}{2}=-\dfrac{\sqrt{3}}{2}\)
CMR:
\(\dfrac{\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}=1+\sqrt{2}\)
\(\dfrac{\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{4}+\sqrt{5}\right)+\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{4}+\sqrt{2}.\sqrt{5}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{4}+\sqrt{5}\right)\left(1+\sqrt{2}\right)}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=1+\sqrt{2}\)
⇒ ĐPCM
CMR: (\(\dfrac{2}{\sqrt{6}-1}+\dfrac{3}{\sqrt{6}-2}+\dfrac{3}{\sqrt{6}-3}\))\(\cdot\dfrac{5}{9\sqrt{6}+4}=\dfrac{1}{2}\)
Giải dùm vs
\(=\left(\dfrac{2}{5}+\dfrac{2}{5}\sqrt{6}+3+\dfrac{3}{2}\sqrt{6}-3-\sqrt{6}\right)\cdot\dfrac{5}{9\sqrt{6}+4}\)
\(=\left(\dfrac{2}{5}+\dfrac{9}{10}\sqrt{6}\right)\cdot\dfrac{5}{9\sqrt{6}+4}\)
\(=\dfrac{5}{10}=\dfrac{1}{2}\)
CMR : \(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{100}}< 18\)
Đặt A=\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{100}}\)
\(\Leftrightarrow A=\dfrac{2}{2\sqrt{2}}+\dfrac{2}{2\sqrt{3}}+....+\dfrac{2}{2\sqrt{100}}\)
\(\Leftrightarrow A=\dfrac{2}{\sqrt{2}+\sqrt{2}}+\dfrac{2}{\sqrt{3}+\sqrt{3}}+....+\dfrac{2}{\sqrt{99}+\sqrt{99}}+\dfrac{2}{\sqrt{100}+\sqrt{100}}\)
\(\Leftrightarrow A=2\left(\dfrac{1}{\sqrt{2}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{99}}+\dfrac{1}{\sqrt{100}+\sqrt{100}}\right)\)
Ta có:
\(\dfrac{1}{\sqrt{2}+\sqrt{2}}< \dfrac{1}{1+\sqrt{2}};\dfrac{1}{\sqrt{3}+\sqrt{3}}< \dfrac{1}{\sqrt{2}+\sqrt{3}}\)
Tường tự, ta có:
\(\dfrac{A}{2}< \dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(A< 2\left(\dfrac{1-\sqrt{2}}{-1}+\dfrac{\sqrt{2}-\sqrt{3}}{-1}+\dfrac{\sqrt{99}-\sqrt{100}}{-1}\right)\)
\(A< -2\left(1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...-\sqrt{99}+\sqrt{99}-\sqrt{100}\right)\)
\(A< -2\left(1-\sqrt{100}\right)\)
\(A< 18\)
Vậy\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{100}}< 18\)