\(\dfrac{1}{27}\) . \(81^n\)=\(3^n\)
2) tìm số tự nhiên n biết:
\(\left(\dfrac{1}{3}\right)^n=\dfrac{1}{27};\left(\dfrac{3}{5}\right)^n=\dfrac{81}{625}\)
\(\left(\dfrac{1}{3}\right)^n=\left(\dfrac{1}{27}\right)\)
\(\Rightarrow\left(\dfrac{1}{3}\right)^n=\left(\dfrac{1}{3}\right)^3\)
\(\Rightarrow n=3\)
\(\left(\dfrac{3}{5}\right)^n=\dfrac{81}{625}\)
\(\Rightarrow\left(\dfrac{3}{5}\right)^n=\left(\dfrac{3}{5}\right)^4\)
\(\Rightarrow n=4\)
a, \(\left(\dfrac{1}{3}\right)^n=\dfrac{1}{27}\Rightarrow\left(\dfrac{1}{3}\right)^n=\left(\dfrac{1}{3}\right)^3\)
Vì \(\dfrac{1}{3}\ne-1,\dfrac{1}{3}\ne0;\dfrac{1}{3}\ne1\) nên \(n=3\)
Vậy........
b, \(\left(\dfrac{3}{5}\right)^n=\dfrac{81}{625}\Rightarrow\left(\dfrac{3}{5}\right)^n=\left(\dfrac{3}{5}\right)^4\)
Vì \(\dfrac{3}{5}\ne-1,\dfrac{3}{5}\ne0;\dfrac{3}{5}\ne1\) nên \(n=4\)
Vậy..........
Chúc bạn học tốt!!!
S = \(81\) + \(27\) + \(9\) + \(3\) ... + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\)
Tính S giúp mik với ạ, ai nhanh mik tick
\(3S=241+81+27+9+...+\dfrac{1}{9}+\dfrac{1}{27}\)
\(2S=3S-S=241-\dfrac{1}{81}=\dfrac{241x81-1}{81}\)
\(\Rightarrow S=\dfrac{241x81-1}{2x81}\)
2. tìm số nguyên N
a. \(27^n:3^n=9\)
b. \(\dfrac{25}{5^n}=5\)
c. \(\left(\dfrac{81}{-3}\right)^n=-243\)
d. \(\dfrac{-1}{2}.2^n+4.2^n=9.2^5\)
a: =>9^n=9
=>n=1
b: =>5^n=5
=>n=1
c: \(\Leftrightarrow\left(-27\right)^n=-243\)
=>\(\left(-3\right)^{3n}=\left(-3\right)^5\)
=>3n=5
=>n=5/3
d: =>2^n*9/2=9*2^5
=>2^n=9*2^5:9/2=2^5*2=2^6
=>n=6
a. \(\dfrac{32}{2^n}=2\)
b. \(16^n:2^n=8\)
c. \(\dfrac{\left(-3\right)^n}{81}=\left(-27\right)\)
a. \(\dfrac{32}{2^n}=2\)
\(\Leftrightarrow2^n.2=32\)
\(\Rightarrow2^{n+1}=2^5\)
\(\Rightarrow n+1=5\)
\(\Rightarrow n=4\)
Vậy...
b. \(16^n:2^n=8\)
\(\Rightarrow\left(2^4\right)^n:2^n=2^3\)
\(\Rightarrow4n-n=3\)
\(\Rightarrow3n=3\)
\(\Rightarrow n=1\)
Vậy...
c. \(\dfrac{\left(-3\right)^n}{81}=\left(-27\right)\)
\(\Leftrightarrow\left(-3\right)^n=81.\left(-27\right)\)
\(\Rightarrow\left(-3\right)^n=\left(-2187\right)\)
\(\Rightarrow\left(-3\right)^n=\left(-3\right)^7\)
\(\Rightarrow n=7\)
Vậy...
a, \(\dfrac{32}{2^n}\) =2 =>25=2n+1=>5=n+1=>n=4
b, 24n:2n=23=>23n=23=>3n=3=>n=1
c, \(\dfrac{\left(-3\right)^n}{81}\)=(-27)=>(-3)n=34 . (-3)3=>n=7
Tìm x ∈ N biết :
a) \(8< 2^x\le2^9.2^{-5}\)
b)\(27< 81^3:3^x< 243\)
c)\(\left(\dfrac{2}{5}\right)^x>\left(\dfrac{5}{2}\right)^{-3}.\left(\dfrac{-3}{5}\right)^2\)
\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)
\(\left(x+\dfrac{1}{3}\right)+\left(x+\dfrac{1}{9}\right)+\left(x+\dfrac{1}{27}\right)+\left(x+\dfrac{1}{81}\right)=\dfrac{56}{81}\)
Tham khảo link: https://olm.vn/hoi-dap/detail/55111422944.html
`(x+1/3)+(x+1/9)+(x+1/27)+(x+1/81)=56/81`
`x+x+x+x+1/3+1/9+1/27=56/81-1/81`
`4x+13/27=55/81`
`4x=55/81-13/27`
`4x=55/81-52/81`
`4x=16/81`
`x=4/108`
Vậy `x=4/108`
\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\)+\(\dfrac{1}{720}\)
\(A=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\\ \Rightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\\ \Rightarrow3A-A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}-\dfrac{1}{3}-\dfrac{1}{9}-\dfrac{1}{27}-\dfrac{1}{81}-\dfrac{1}{243}-\dfrac{1}{729}\\ \Rightarrow2A=1-\dfrac{1}{729}\\ \Rightarrow2A=\dfrac{728}{729}\\ \Rightarrow A=\dfrac{364}{729}\)
1+\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\)+\(\dfrac{1}{729}\)=?
Đặt A = \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
3A = 3 + 1 + \(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
3A - A = ( 3 + 1 + \(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\) ) - ( \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\) )
2A = 3 - \(\dfrac{1}{729}=\dfrac{728}{729}\)
A = \(\dfrac{728}{729}:2=\dfrac{364}{729}\)
Úi
2A = 3 - \(\dfrac{1}{729}=\dfrac{2186}{729}\)
A = \(\dfrac{2186}{729}:2=\dfrac{1093}{729}\)
Tìm x: x+1+\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)=2
\(x+\dfrac{40}{27}=2\)
\(x=\dfrac{14}{27}\)
\(x+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}=2\)
\(\Leftrightarrow x+\dfrac{121}{81}=2\)
hay \(x=\dfrac{41}{81}\)
Tìm số tự nhiên n, biết :
a) \(\dfrac{16}{2^n}\)=2
b) \(\dfrac{\left(-3\right)^n}{81}\)=-27
c) 8n:2n=4
a, \(\dfrac{16}{2^n}=2\)
\(2^n=\dfrac{16}{2}\)
\(2^n=8\)
\(2^n=2^3\)
=> n = 3
b, \(\dfrac{\left(-3\right)^n}{81}=-27\)
\(\left(-3\right)^n=-27\cdot81\)
\(\left(-3\right)^n=\left(-3\right)^3\cdot3^4\)
\(\left(-3\right)^n=\left(-3\right)^7\)
=> n = 7
c, \(8^n:2^n=4\)
\(2^{3n}:2^n=2^2\)
\(2^{2n}=2^2\)
=> 2n = 2
n = 2:2
n = 1
a )
\(\dfrac{16}{2^n}=2\) \(\Leftrightarrow16:x=2\)
\(\Rightarrow x=8\)
\(2^n=8\Rightarrow n=3\)
b )
\(\dfrac{\left(-3\right)^n}{81}=-27\) \(\Leftrightarrow x=-27.81\)
\(\Rightarrow x=-2187\)
\(\left(-3\right)^n=-2187\Rightarrow n=7\)
c )
\(8^n:2^n=4\Leftrightarrow4^n=4\)
\(\Rightarrow n=1\)
(2^2:4)*2^n=4
3^2*3^4*3^n=3^7