a, \(\dfrac{16}{2^n}=2\)
\(2^n=\dfrac{16}{2}\)
\(2^n=8\)
\(2^n=2^3\)
=> n = 3
b, \(\dfrac{\left(-3\right)^n}{81}=-27\)
\(\left(-3\right)^n=-27\cdot81\)
\(\left(-3\right)^n=\left(-3\right)^3\cdot3^4\)
\(\left(-3\right)^n=\left(-3\right)^7\)
=> n = 7
c, \(8^n:2^n=4\)
\(2^{3n}:2^n=2^2\)
\(2^{2n}=2^2\)
=> 2n = 2
n = 2:2
n = 1
a )
\(\dfrac{16}{2^n}=2\) \(\Leftrightarrow16:x=2\)
\(\Rightarrow x=8\)
\(2^n=8\Rightarrow n=3\)
b )
\(\dfrac{\left(-3\right)^n}{81}=-27\) \(\Leftrightarrow x=-27.81\)
\(\Rightarrow x=-2187\)
\(\left(-3\right)^n=-2187\Rightarrow n=7\)
c )
\(8^n:2^n=4\Leftrightarrow4^n=4\)
\(\Rightarrow n=1\)
(2^2:4)*2^n=4
3^2*3^4*3^n=3^7