Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
VT
Xem chi tiết
NC
28 tháng 6 2020 lúc 8:36

Tìm điểm rơi: ( a; b ; c ) = ( -3; 3; 0 ) hoặc ( 3; -3 ; 0 ) 

Xét: 2P + 3.18 \(\ge\) 2( 3ab + bc + ca ) + 3(a^2 + b^2 + c^2)  = ( a+ b + c)^2 + 2(a+b)^2 + 2c^2\(\ge\)0 đúng

( nháp = k ( a+ b + c)^2 + m ( a + b)^2 + n c^2 

k + m = 3

n +k = 3

2k + 2m = 6   <=> k = 1; m = 2; n = 2

2k = 2 ) 

Do đó: 2P \(\ge\)-3.18 

=> P \(\ge\)-27

Dấu "=" xảy ra <=> a = - b ; c = 0 ; a^2 + b^2 + c^2 = 18 <=> a = 3; b = - 3; c = 0 hoặc a = -3; b = 3 và c = 0

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
H24
15 tháng 3 2021 lúc 19:00

undefined

Bình luận (0)
NV
Xem chi tiết
NL
4 tháng 10 2021 lúc 21:55

\(a+b+c=0\) nên trong 3 số a;b;c phải có ít nhất 1 số dương

Do vai trò của 3 biến như nhau, ko mất tính tổng quát, giả sử \(c>0\)

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)=\left(-c\right)^3+c^3-3ab\left(-c\right)=3abc=-6\)

\(\Rightarrow F=\dfrac{ab+bc+ca-\left(a^2+b^2+c^2\right)}{-6}=\dfrac{3\left(ab+bc+ca\right)}{-6}=\dfrac{ab+bc+ca}{-2}\)

\(=\dfrac{-\dfrac{2}{c}+c\left(a+b\right)}{-2}=\dfrac{-\dfrac{2}{c}+c\left(-c\right)}{-2}=\dfrac{c^2}{2}+\dfrac{1}{c}=\dfrac{c^2}{2}+\dfrac{1}{2c}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2}{8c^2}}=\dfrac{3}{2}\)

\(F_{min}=\dfrac{3}{2}\) khi \(\left(a;b;c\right)=\left(-2;1;1\right)\) và các hoán vị

Bình luận (0)
KN
Xem chi tiết
PQ
2 tháng 8 2020 lúc 22:16

đổi ẩn 

\(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};z\right)\)\(\Rightarrow\)\(x+y+z=3\)

\(P=\Sigma\frac{1}{\sqrt{xy+x+y}}\ge\Sigma\frac{2\sqrt{3}}{xy+x+y+3}\ge\frac{18\sqrt{3}}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+9}=\sqrt{3}\)

dấuu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
VD
Xem chi tiết
LA
Xem chi tiết
AN
12 tháng 11 2018 lúc 14:27

Gọi \(S=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+ab+c^2}+\frac{a^3}{c^2+ab+a^2}\)

Dễ thấy \(P-S=0\)

\(\Rightarrow2P=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+ab+c^2}+\frac{c^3+a^3}{c^2+ab+a^2}\)

Ta chứng minh: 

\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{a+b}{3}\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)

\(\Rightarrow2P\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=2\)

\(\Rightarrow P\ge1\)

Bình luận (0)
H24
5 tháng 9 2021 lúc 18:08

P-S=0 ?? =))

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết