cho n thuộc N.CMR các cặp số sau đây là số nguyên tố cùng nhau.
a) 5n+8 và 3n+5
b) 9n+2 và 3n+1
CMR với mọi x thuộc N* các cặp số sau đây là nguyên tố cùng nhau :
a) n và n+1
b) 3n+2 và 5n+3
c) 2n+1 và 2n+3
đ) 2n+1 và 6n+5
đ, gọi d là ước nguyên tố chung của 2n + 1 và 6n + 5
ta có : 2n + 1 : hết cho d ; 6n + 5 : hết cho d
=> 3( 2n + 1) : hết cho d : 6n + 5 : hết cho d
=> ( 6n + 5) - 3( 2n + 1) : hết cho d
=> 2 : hết cho d
=> d = 2
mà 2n + 1 ko : hết cho d
=> d = 1( dpcm)
a) Goi d la UCLN ( n ; n+1 ) b) Goi d la UCLN ( 3n+2 ;5n+3)
n+1 chia het cho d 3n+2 chia het cho d-->5(3n+2) chia het cho d
n chia het cho d 5n+3 chia het cho d-->3(5n+3) chia het cho d
-> n+1-n chia het cho d ->5(3n+2)-3(5n+3) chia het cho d
-> 1 chia het cho d -> 15n+10-15n-9 chia het cho d
Va n va n+1 la hai so ngto cung nhau - -> 1 chia het cho d
Vay 3n+2 va 5n+3 chia het cho d
c) Goi d la UCLN (2n+1;2n+3) d) Goi d la UCLN (2n+1;6n+5)
2n+1 chia het cho d 2n+1 chia het cho d-->3(2n+1) chiA het cho d
2n+3 chia het cho d--> 2n+1+2 chia het cho d 6n+5 chia het cho d
->2 chia het cho d ->6n+5-3(2n+1) chia het cho d
--> d \(\in\)U (2)-> d\(\in\) {1;2} -> 6n+5-6n-3 chia het cho d
d=2 loai vi 2n+1 khong chia het cho 2-> d=1 ->2 chia het cho d
Vay 2n+1 va 2n+3 la hai so ng to cung nhau --> d \(\in\)U (2)-> d\(\in\) {1;2}
d=2 loai vi 5n+3 k chia het cho 2-->d=1
vay 2n+1 va 6n+5 la2 so ng to cung nhAU
Với số tự nhiên n,chứng tỏ các cặp số sau là số nguyên tố cùng nhau.
a)2n + 3 và 3n + 5 c,3n + 4 và 4n + 5
b)5n + 3 và 7n + 5 d,4n + 1 và 6n + 2
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Chứng tỏ các cặp số sau nguyên tố cùng nhau với mọi số tự nhiên n
a) 2n+1 và 6n+5
b) 14n+3 và 21n+4
c) 2n+1 và 3n+1
d) n+2 và 3n+7
a: Gọi d=ƯCLN(6n+5;2n+1)
=>6n+5-3(2n+1) chia hết cho d
=>2 chia hết cho d
mà 2n+1 lẻ
nên d=1
=>ĐPCM
b: Gọi d=ƯCLN(14n+3;21n+4)
=>42n+9-42n-8 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
d: Gọi d=ƯCLN(3n+7;n+2)
=>3n+7 chia hết cho d và n+2 chia hết cho d
=>3n+7-3n-6 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
a: Gọi d=ƯCLN(6n+5;2n+1)
=>6n+5-3(2n+1) chia hết cho d
=>2 chia hết cho d
mà 2n+1 lẻ
nên d=1
=>ĐPCM
b: Gọi d=ƯCLN(14n+3;21n+4)
=>42n+9-42n-8 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
d: Gọi d=ƯCLN(3n+7;n+2)
=>3n+7 chia hết cho d và n+2 chia hết cho d
=>3n+7-3n-6 chia hết cho d
=>1 chia hết cho d
=>d=1
câu trả lời nhé bn
Tìm điều kiện của n để hai số sau không nguyên tố cùng nhau
a) 2n – 1 và 9n + 4 (n∊N) b) 3n + 1 và 5n + 4 ( n thuộc N)
Chứng minh rằng các cặp sau đây là nguyên tố cùng nhau với mọi số tự nhiên:
1. n+6 và n+7 2. 2n+5 và 3n+7
3. 2n+5 và 4n+8 4. 5n+12 và 3n+7
tìm n để các số sau nguyên tố cùng nhau
a, 3n+4 và 5n+1
b, 2n-1 và 9n+4
Chứng minh rằng với mọi số tự nhiên n , các số sau là các số nguyên tố cùng nhau.
a)2n+2 và 2n +3
b) 2n+1 và n+1
n+1 và 3n =4
a: Gọi d=ƯCLN(2n+2;2n+3)
=>2n+3-2n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+2 và 2n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+1;n+1)
=>2n+1 chia hết cho d và n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>2n+2-2n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
a) Đặt d là ƯCLN(2n+2, 2n+3)
\(2n+2\text{ ⋮ }d\) và \(2n+3\text{ ⋮ }d\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)\text{ ⋮ }d\)
\(\Rightarrow2n+3-2n-2\text{ ⋮ }d\)
\(\Rightarrow1\text{ ⋮ }d\)
\(\Rightarrow d=1\)
Vậy 2n+2 và 2n+3 là cặp số nguyên tốc cùng nhau
b) Đặt d là ƯCLN(2n+1, n+1)
\(2n+1\text{ ⋮ }d\) và \(n+1\text{ ⋮ }d\)
\(\Rightarrow2n+1\text{ ⋮ }d\) và \(2n+2\text{ ⋮ }d\)
\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)\text{ ⋮ }d\)
\(\Rightarrow2n+2-2n-1\text{ ⋮ }d\)
\(\Rightarrow1\text{ ⋮ }d\)
\(\Rightarrow d=1\)
Vậy 2n+1 và n+1 là cặp số nguyên tố cùng nhau
c) Đặt d là ƯCLN(n+1, 3n+4)
\(n+1\text{ ⋮ }d\) và \(3n+4\text{ ⋮ }d\)
\(\Rightarrow3n+3\text{ ⋮ }d\) và \(3n+4\text{ ⋮ }d\)
\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)\text{ ⋮ }d\)
\(\Rightarrow3n+4-3n-3\text{ ⋮ }d\)
\(\Rightarrow1\text{ ⋮ }d\)
Vậy n+1 và 3n+4 là cặp số nguyên tốc cùng nhau
tìm các ƯC của các cặp số sau từ đó suy ra các cặp số nào nguyên tố cùng nhau vs n thuộc N
a) 2n+1 và 3n+1
b) 5n+6 và 8n+7
c)7n+10 và 5n+7
d) n^2+2n+2 và n+1
a) Gọi ƯC cua 2n+1 ; 3n+1 là d
\(\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\)
\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow6n+3-6n-2⋮d\\ \Rightarrow1⋮d\\ d=1 \)
b) Gọi ƯC cua 5n+6 và 8n+7 là d
\(\Rightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\\\Rightarrow 40n+48-40n-35⋮d\\\Rightarrow5⋮d\\ d=5 \)
c)7n+10 và 5n+7
Gọi d=(7n+10,5n+7) với n \(\in\) N và d \(\in\) N*
\(\Rightarrow\)7n+10\(⋮\)d\(\Rightarrow\)5(7n+10)\(⋮\)d\(\Rightarrow\)35n+50\(⋮\)d (1)
\(\Rightarrow\)5n+7\(⋮\)d \(\Rightarrow\)7(5n+7) \(⋮\)d\(\Rightarrow\)35n+49\(⋮\)d (2)
Từ (1) và (2) suy ra: (35n+50)-(35n+49)\(⋮\)d
35n+50-35n-49 \(⋮\)d
(35n-35n)+(50-49)\(⋮\)d
0 + 1 \(⋮\)d
1 \(⋮\)d
Vì:1\(⋮\)d nên d\(\in\)Ư(1)
Mà:Ư(1)={1} nên d=1
Vậy 2n+1 và 3n+1 là hai số nguyên tố cùng nhau
Chứng minh các cặp số sau là số nguyên tố cùng nhau:
a)2n+3 và 4n+8
b)3n+2 và 5n+3
Đặt (2n+3;4n+8)=d
=>2n+3 chia hết cho d
4n+8 chia hết cho d
Do đó 2(2n+3) chia hết cho d
mà 4n+8 chia hết cho d
=>4n+8-4n-6 chia hết cho d
=> 2 chia hết cho d
=> d thuộc {1;2}
=>d=1
Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
b) Bạn giải tương tự câu a nhé