Những câu hỏi liên quan
DS
Xem chi tiết
NT
29 tháng 7 2023 lúc 23:17

a: Để phương trình có nghiệm thì (-2)^2-4(m-3)>=0

=>4-4m+12>=0

=>-4m+16>=0

=>-4m>=-16

=>m<=4

b: x1-x2=4

x1+x2=2

=>x1=3; x2=-1

x1*x2=m-3

=>m-3=-3

=>m=0(nhận)

Bình luận (0)
NL
Xem chi tiết
HN
Xem chi tiết
ND
13 tháng 3 2021 lúc 13:14

a) Thay m=-2 vào pt:

\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Với m= -2 => S= {-2;0}

b) Để phương trình trên có 1 nghiệm x1=2:

<=> 22 -2.(m+1).2-(m+2)=0

<=> 4-4m -4 -m-2=0

<=> -5m=2

<=>m=-2/5

c) ĐK của m để pt trên có nghiệm kép:

\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)

Vô nghiệm.

Bình luận (0)
HL
Xem chi tiết
NT
7 tháng 3 2022 lúc 22:58

b: \(\text{Δ}=\left(2m+3\right)^2-4\left(4m+2\right)\)

\(=4m^2+12m+9-16m-8\)

\(=4m^2-4m+1=\left(2m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

Theo đề, ta có:

\(\left\{{}\begin{matrix}2x_1-5x_2=6\\x_1+x_2=2m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1-5x_2=6\\2x_1+2x_2=4m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7x_2=-4m\\2x_1=5x_2+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\2x_1=\dfrac{20}{7}m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\x_1=\dfrac{10}{7}m+3\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=4m+2\)

\(\Rightarrow4m+2=\dfrac{40}{49}m^2+\dfrac{12}{7}m\)

\(\Leftrightarrow m^2\cdot\dfrac{40}{49}-\dfrac{16}{7}m-2=0\)

\(\Leftrightarrow40m^2-112m-98=0\)

\(\Leftrightarrow40m^2-140m+28m-98=0\)

=>\(20m\left(2m-7\right)+14\left(2m-7\right)=0\)

=>(2m-7)(20m+14)=0

=>m=7/2 hoặc m=-7/10

Bình luận (0)
H24
Xem chi tiết
HP
Xem chi tiết
TC
23 tháng 11 2021 lúc 8:15

Câu 1:Ta có:

a) \(\left|x-3\right|=5\Leftrightarrow\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b) \(\left|2x+3\right|=2.\left|4-x\right|\)

+)Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le x\le4\)

Khi đó \(2x+3=2\left(4-x\right)\Leftrightarrow2x+3=8-2x\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow x\ge4\)

Khi đó: \(2x+3=2\left(x-4\right)=2x-8\Leftrightarrow0x=-11\left(vl\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{-3}{2}\)

Khi đó: \(-\left(2x+3\right)=2.\left(4-x\right)\Leftrightarrow-2x-3=8-2x\left(vl\right)\)

+)Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-3}{2}\\x\ge4\end{matrix}\right.\) \(\left(vl\right)\)

Vậy...

c) ĐKXĐ : \(3-x\ge0\Leftrightarrow x\le3\)

+)Xét \(x^{^2}-3x+1\ge0\)

\(\Leftrightarrow x^2-3x+1=3-x\Leftrightarrow x^2-2x-2=0\)

\(\Leftrightarrow x^2-2x+1=3\Leftrightarrow\left(x-1\right)^2=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\left(tm\right)\\x=1-\sqrt{3}\left(tm\right)\end{matrix}\right.\)

+)Xét \(x^{^2}-3x+1\le0\)

\(\Leftrightarrow-\left(x^2-3x+1\right)=3-x\)

\(\Leftrightarrow x^2-3x+1=x-3\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tm\right)\)

Vậy...

Bình luận (0)
TC
23 tháng 11 2021 lúc 8:40

Câu 2:

 Ta có:

Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có một nghiệm là \(x=-3\)

\(\Rightarrow\)Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có ba nghiệm phân biệt khi và chỉ khi \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\)

Ta có:  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt khi và chỉ khi \(\text{△}>0\Leftrightarrow8-4m>0\Leftrightarrow m< 2\)

 Gọi \(x_1\) và \(x_2\) là 2 nghiệm của phương trình \(x^2-2x+m-1=0\).Theo hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-2}{1}=2\\x_1x_2=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-x_2\\\left(2-x_2\right).x_2=m-1\end{matrix}\right.\)

Nếu \(x_2\ne-3\) thì \(m-1\ne-15\Leftrightarrow m\ne-14\).

Do vai trò của  \(x_1\) và \(x_2\) là như nhau nên  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\) khi và chỉ khi: \(\left\{{}\begin{matrix}m< 2\\m\ne-14\end{matrix}\right.\)

Bình luận (0)
VP
Xem chi tiết
NT
25 tháng 10 2023 lúc 21:09

a: Sửa đề: PT x^2-2x-m-1=0

Khi m=2 thì Phương trình sẽ là:

x^2-2x-2-1=0

=>x^2-2x-3=0

=>(x-3)(x+1)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

b:

\(\text{Δ}=\left(-2\right)^2-4\left(-m-1\right)\)

\(=4+4m+4=4m+8\)

Để phương trình có hai nghiệm dương thì

\(\left\{{}\begin{matrix}4m+8>0\\2>0\\-m-1>0\end{matrix}\right.\Leftrightarrow-2< m< -1\)

\(\sqrt{x_1}+\sqrt{x_2}=2\)

=>\(x_1+x_2+2\sqrt{x_1x_2}=4\)

=>\(2+2\sqrt{-m-1}=4\)

=>\(2\sqrt{-m-1}=2\)

=>-m-1=1

=>-m=2

=>m=-2(loại)

Bình luận (0)
AR
Xem chi tiết
AB
28 tháng 8 2021 lúc 9:32

hello

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết