Cho PT \(x^2-2\left(m+1\right)x+m^2+2m=0\) ( m là tham số). Tìm m để PT có 2 nghiệm phân biệt \(x_1;x_2\) ( với \(x_1< x_2\)) thảo mãn \(\left|x_1\right|=3\left|x_2\right|\)
cho \(x^2-2\left(m-1\right)x-2m=0\) (m tham số). CMR: PT luôn có 2 nghiệm phân biệt với mọi m. Gọi `x_1 ;x_2` là 2 nghiệm của PT, tìm tất cả giá trị m để \(x_1^2+x_1-x_2=5-2m\)
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Cho pt: \(mx^2-\left(2m+1\right)x+m+3=0\)
a) tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b) giả sử \(x_1;x_2\) là 2 nghiệm của pt trên. tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)
\(=4m^2+4m+1-4m^2-12m\)
\(=-8m+1\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow-8m+1>0\)
\(\Leftrightarrow-8m>-1\)
hay \(m< \dfrac{1}{8}\)
Cho pt: \(m^2-\left(2x+1\right)x+m+3=0\)
a). Tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b). giả xử \(x_1;x_2\) là 2 nghiệm của pt trên. Tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
cho pt \(x^2-4x+m-1=0\) với m là tham số
a) giải pt với m=4
b) tìm m để pt có 2 nghiệm phân biệt thỏa mãn: \(x_1\left(x_1+2\right)+x_2\left(x_2+2\right)=20\)
a: Thay m=4 vào phương trình, ta được:
\(x^2-4x+4-1=0\)
=>\(x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b: \(\text{Δ}=\left(-4\right)^2-4\cdot1\left(m-1\right)\)
\(=16-4m+4=-4m+20\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+20>0
=>-4m>-20
=>\(m< 5\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
\(x_1\left(x_1+2\right)+x_2\left(x_2+2\right)=20\)
=>\(\left(x_1^2+x_2^2\right)+2\left(x_1+x_2\right)=20\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=20\)
=>\(4^2-2\cdot\left(m-1\right)+2\cdot4=20\)
=>-2(m-1)+24=20
=>-2(m-1)=-4
=>m-1=2
=>m=3(nhận)
1) Cho pt \(5x^2-7x+1=0\)
a) C minh pt có 2 nghiệm phân biệt \(x_1,x_2\)
b) Tính giá trị biểu thức \(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x^2_2}+x^2_2\)
2) Cho pt \(x^2-4+1-2m=0\) (x là ẩn số)
a) tìm m để pt có nghiệm
b) tìm m để 2 nghiệm \(x_1,x_2\) của pt thỏa \(x^2_1+x^2_2=6\)
`1)`
$a\big)\Delta=7^2-5.4.1=29>0\to$ PT có 2 nghiệm pb
$b\big)$
Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{5}\\x_1x_2=\dfrac{1}{5}\end{matrix}\right.\)
\(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x_2^2}+x_2^2\\ \Rightarrow A=\left(x_1-x_1-x_2\right)x_1+\left(\dfrac{1}{5}\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\\ \Rightarrow A=-x_1x_2+\left(x_1x_2\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\)
\(\Rightarrow A=-x_1x_2+x_1^2+x_2^2\\ \Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2\\ \Rightarrow A=\left(\dfrac{7}{5}\right)^2-3\cdot\dfrac{1}{5}=\dfrac{34}{25}\)
Cho pt: \(x^2-2\left(m+1\right)x+2m=0\). Pt này luôn có 2 nghiệm phân biệt \(x_1;x_2\) \(\forall m\). Tìm m để 2 nghiệm \(x_1;x_2\) thỏa mãn:
\(x_1^2=9x_2+10\) (với \(x_1\)≥ 4)
\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)
(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))
Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)
\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)
\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)
\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\)
\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)
Thế vào \(x_1x_2=2m\)
\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)
\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)
\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))
cho pt: \(x^2-\left(2m-1\right)x+m^2-1=0\) (1)
a) tìm điều kiện của m để pt (1) có 2 nghiệm phân biệt
b) tìm m để 2 ngiệm \(x_1\), \(x_2\) của pt (1) t/m: \(\left(x_1-x_2\right)^2=x_1-3x_2\)
giúp mk vs mk cần gấp
a. Phương trình có 2 nghiệm phân biệt khi:
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)=5-4m>0\)
\(\Rightarrow m< \dfrac{5}{4}\)
b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-1\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=x_1-3x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)
\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)
\(\Leftrightarrow x_1-3x_2=5-4m\)
Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\4x_2=6m-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+1}{2}\\x_2=\dfrac{3m-3}{2}\end{matrix}\right.\)
Thế vào \(x_1x_2=m^2-1\)
\(\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3m-3}{2}\right)=m^2-1\)
\(\Leftrightarrow m^2-1=0\Rightarrow m=\pm1\) (thỏa mãn)
Cho pt: \(x^2-2\left(m+1\right)x+2m=0\). pt trình này luôn có 2 nghiệm phân biệt \(x_1;x_2\) với ∀m. Khi đó tìm m để 2 nghiệm \(x_1;x_2\) thỏa mãn: \(x_1^2=9x_2+10\) (với \(x_1\)≥ 4)
Cái này phân tích đề ra là lm được bạn nhé
Cho pt : \(x^2-2\left(m-1\right)x-2m+1=0\) .
Tìm m để pt có 2 nghiệm \(x_1,x_2\) phân biệt thỏa mãn \(2x_1-x_2=2\)
x1+x2=2m-2
2x1-x2=2
=>3x1=2m và 2x1-x2=2
=>x1=2m/3 và x2=4m/3-2
x1*x2=-2m+1
=>8/9m^2-4/3m+2m-1=0
=>8/9m^2+2/3m-1=0
=>8m^2+6m-9=0
=>m=3/4 hoặc m=-3/2
\(x^2-2\left(m-1\right)x-2m+1=0\left(1\right)\)
Để phương trình (1) có 2 nghiệm phân biệt thì:
\(\Delta>0\Rightarrow\left[2\left(m-1\right)\right]^2-4\left(-2m+1\right)>0\)
\(\Leftrightarrow4\left(m-1\right)^2+8m-4>0\)
\(\Leftrightarrow4m^2-8m+4+8m-4>0\)
\(\Leftrightarrow4m^2>0\Leftrightarrow m\ne0\)
Vậy với \(\forall m\ne0\) thì phương trình (1) có 2 nghiệm phân biệt.
Theo định lí Viete cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m+1\end{matrix}\right.\)
Ta có \(2x_1-x_2=2\Rightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)-2=3x_2\left(1'\right)\\\left(x_1+x_2\right)+2=3x_1\left(2'\right)\end{matrix}\right.\)
Lấy (1') nhân cho (2') ta được:
\(\left[2\left(x_1+x_2\right)-2\right]\left[\left(x_1+x_2\right)+2\right]=9x_1x_2\)
\(\Rightarrow\left[2.2\left(m-1\right)-2\right]\left[2\left(m-1\right)+2\right]=9\left(-2m+1\right)\)
\(\Leftrightarrow\left(4m-6\right).2m=-18m+9\)
\(\Leftrightarrow8m^2+6m-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{-3}{2}\end{matrix}\right.\)
Thử lại ta có m=3/4 hay m=-3/2