Cho A=1+x+x2+...2100 .Chứng tỏ A=\(\dfrac{x^{1001}-1}{x-1}\)
Cho A = 1001 x 1002 x 1003 x ...... x 2000 và B = 1 x 3 x 5 x 7 x ..... x 1999. Chứng tỏ rằng A chia hết cho B
Bài 1 : Rút gọn
b) 1/x-3-1/x+3+2x/9-x2
c) x+1/x-2+4-5x/x3+4x:x-2/x2+44
Bài 2 Cho A=x3-1/(x-1)(x+2) ( với x khác 1; x khác -2)
a) Chứng tỏ biểu thức A=x3-1/(x-1)(x+2)biết x=-3
b) chứng tỏ để A=1
Câu 1:
b: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
\(\dfrac{1}{x-3}-\dfrac{1}{x+3}+\dfrac{2x}{9-x^2}\)
\(=\dfrac{1}{x-3}-\dfrac{1}{x+3}-\dfrac{2x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x+3-x+3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{-2x+6}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\dfrac{2}{x+3}\)
c: ĐKXĐ: \(x\notin\left\{2;0\right\}\)
Sửa đề: \(\dfrac{x+1}{x-2}+\dfrac{4-5x}{x^3+4x}:\dfrac{x-2}{x^2+4}\)
\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x^2+4\right)}\cdot\dfrac{x^2+4}{x-2}\)
\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x-2\right)}\)
\(=\dfrac{x\left(x+1\right)+4-5x}{x\left(x-2\right)}=\dfrac{x^2+x-5x+4}{x\left(x-2\right)}\)
\(=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}\)
Cho: \(A=\dfrac{1}{\sqrt{x}}\) (ĐKXĐ: x>0, \(x\ne1\)). Hãy chứng tỏ rằng: \(B=\left(x-\sqrt{x}+1\right).A>1\)
\(B=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\dfrac{1}{\sqrt{x}}-1\ge2\sqrt{\dfrac{\sqrt{x}}{\sqrt{x}}}-1=1\)
Dấu "=" không xảy ra (do \(x\ne1\) ) nên \(B>1\)
Cho A = \(\dfrac{1}{x^2+x}+\dfrac{1}{x+1}\) và B = \(\dfrac{2}{x+1}\)
a) Chứng tỏ A = \(\dfrac{1}{x}\)
b) Rút gọn P = A : B
c) Tìm x để P = 3
d) Tìm giá trị nhỏ nhất của biểu thức C = \(2x^2\). P
e) Tìm x để P > \(\dfrac{1}{2}\)
Giúp mình vs :)
c) Để P=3 thì \(\dfrac{x+1}{2x}=3\)
\(\Leftrightarrow x+1=6x\)
\(\Leftrightarrow x-6x=-1\)
\(\Leftrightarrow-5x=-1\)
hay \(x=\dfrac{1}{5}\)(thỏa ĐK)
Vậy: Để P=3 thì \(x=\dfrac{1}{5}\)
a) Ta có: \(A=\dfrac{1}{x^2+x}+\dfrac{1}{x+1}\)
\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}\)
\(=\dfrac{x+1}{x\left(x+1\right)}=\dfrac{1}{x}\)
b) Ta có: \(P=\dfrac{A}{B}\)
\(=\dfrac{1}{x}:\dfrac{2}{x+1}\)
\(=\dfrac{1}{x}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x+1}{2x}\)
cho biểu thức A=\(\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) (với x ≠+-2)
a) rút gọn A
b)chứng tỏ rằng với mọi x thõa mãn -2<x<2, x≠-1 biểu thức A luôn có giá trị âm
a) \(A= \dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4} \\ =\dfrac{1}{x-2}+\dfrac{1}{x-2}+\dfrac{x^2+1}{(x-2)(x+2)} \\= \dfrac{x+2+x-2+x^2+1}{(x-2)(x+2)} \\=\dfrac{x^2+2x+1}{x^2-4} \\ =\dfrac{(x+1)^2}{(x-2)(x+2)}\)
b) Với mọi \(x\) thỏa mãn \(-2<x<2\) và \(x \ne -1\) thì \(x-2\) đều có giá trị âm, mà \(\begin{cases}(x+1)^2≥0\\x+2>0\\\end{cases}\) \( \Rightarrow\) Biểu thức A luôn có giá trị âm.
dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng :
a,\(\dfrac{x2y2}{5}\)=\(\dfrac{7x3y4}{35xy}\)
b,\(\dfrac{x3-4x}{10-5x}\)=\(\dfrac{-X2-2X}{5}\)
C,\(\dfrac{x+2}{X-1}\)=\(\dfrac{\left(x+2\right)\left(x+1\right)}{x2-1}\)
d,\(\dfrac{x2-x-2}{x+1}\)=\(\dfrac{x2-3x+2}{x-1}\)
e,\(\dfrac{x3+8}{x2-2x+4}\)=x+2
cho biểu thức A= \(\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) (x ≠ 2, x ≠ -2)(biểu thức rút gọn là A=\(\dfrac{x-1}{x+2}\))
Chứng tỏ rằng với mọi x thỏa mãn: -2 < x < 2, x ≠ -1 phân thức luôn có giá trị âm
\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)
Với \(-2< x< 2\Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x+2>0\end{matrix}\right.\Leftrightarrow\left(x-2\right)\left(x+2\right)< 0;x\ne-1\Leftrightarrow\left(x+1\right)^2>0\Leftrightarrow A< 0\)
\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x+1}{x^2-4}\)
Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4
Tổng A có 1000 số hạng.
Vậy
Chúc bạn học tốt.
Tổng A có 1000 số hạng
A>(1001/1000^2+1000)*1000=1001*1000/1000*(1000+1)=1
A<(1001/1000^2)*1000=1001/1000=1+1/1000<1
Vậy 1<A<2 nên 1<A^2<4
Cho biểu thức A=\(\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Chứng tỏ rằng với mọi x thỏa mãn -2 < x < 2,x ≠ -1 phân thức luôn có giá trị âm
Giúp mình gấp với ☹
\(a,A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\left(dkxd:x\ne\pm2\right)\)
\(=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+1\right)^2}{x^2-4}\)
Vậy \(A=\dfrac{\left(x+1\right)^2}{x^2-4}\)
\(b,\) Theo đề, ta có : \(-2< x< 2\)
\(\Rightarrow x-2< 0;x+2>0;\left(x+1\right)^2>0\)
\(\Rightarrow A< 0\) hay phân thức luôn có giá trị âm