Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NT
Xem chi tiết
NT
27 tháng 1 2022 lúc 21:37

\(M=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{x^2+y^2+z^2-xy-yz-xz}\)

\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{x^2+y^2+z^2-xy-yz-xz}\)

\(=x+y+z\)

Bình luận (0)
VL
Xem chi tiết
KN
13 tháng 11 2019 lúc 21:53

a) \(\frac{3m-6n}{10n-5m}\)

\(=\frac{-3\left(2n-m\right)}{5\left(2n-m\right)}=\frac{-3}{5}\)

b) \(\frac{y^3+y^2+4y+4}{y^2+2y-8}\)

\(=\frac{y^2\left(y+1\right)+4\left(y+1\right)}{y^2+2y+1-9}\)

\(=\frac{\left(y^2+4\right)\left(y+1\right)}{\left(y+1\right)^2-9}\)

\(=\frac{\left(y^2+4\right)\left(y+1\right)}{\left(y-2\right)\left(y+4\right)}\)

c) \(\frac{x^2-xy-xz+yz}{x^2+xy-xz-yz}\)

\(=\frac{x\left(x-y\right)-z\left(x-y\right)}{x\left(x+y\right)-z\left(x+y\right)}\)

\(=\frac{\left(x-z\right)\left(x-y\right)}{\left(x-z\right)\left(x+y\right)}\)

\(=\frac{x-y}{x+y}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NT
16 tháng 3 2016 lúc 21:37

thay 1 vào tử, thấy: 
căn(5-x) = căn 4= 2; 
căn bậc 3(x^2+7)=căn bậc 3 của 8=2 
=> thêm bớt 2. 
Bài làm: 
lim {[căn(5-x)-2]-[căn bậc 3(x^2-7)-2]}/(x^2-1) 
tương đương: lim [căn(5-x)-2]/(x^2-1) - lim [căn bậc 3(x^2-7)-2]/(x^2-1) 
Tính lim từng số hạng như thường.

Bình luận (0)
NT
17 tháng 3 2016 lúc 20:42

Bạn trả lời rõ dùm mình với

Bình luận (0)
CT
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
NT
5 tháng 12 2021 lúc 13:46

b: \(=\dfrac{\left(x+3\right)^2-y^2}{2\left(x-y+3\right)}\)

\(=\dfrac{\left(x+3+y\right)\left(x+3-y\right)}{2\left(x-y+3\right)}=\dfrac{x+y+3}{2}\)

Bình luận (0)
ND
Xem chi tiết
LG
Xem chi tiết
HP
21 tháng 11 2021 lúc 22:01

1. \(\dfrac{x^3-4x^2+4x}{x^2-4}=\dfrac{x\left(x^2-4x+4\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)}{x+2}\)

 

Bình luận (1)
HP
21 tháng 11 2021 lúc 22:11

Đợi anh chút

Bình luận (0)
NL
21 tháng 11 2021 lúc 22:20

\(\dfrac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\dfrac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}=\dfrac{y\left(x+y\right)^2}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\dfrac{y\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{y\left(x+y\right)}{2x-y}\)

Bình luận (0)
TT
Xem chi tiết
TD
29 tháng 10 2017 lúc 9:43

\(\frac{10}{3}\)

Bình luận (0)