Những câu hỏi liên quan
ST
Xem chi tiết
VT
Xem chi tiết
MT
Xem chi tiết
.
12 tháng 1 2021 lúc 13:53

Ta có: \(C=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)

=> C đạt giá trị nhỏ nhất khi \(\frac{1}{\left|x-2019\right|+2021}\) lớn nhất

=> |x - 2019| + 2021 nhỏ nhất

Ta có: \(\left|x-2019\right|\ge0\)

\(\Rightarrow\left|x-2019\right|+2021\ge2021\)

Dấu "=" xảy ra khi x - 2019 = 0

=> x = 2019

\(\Rightarrow C=\frac{\left|2019-2019\right|+2020}{\left|2019-2019\right|+2021}=\frac{2020}{2021}\)

Vậy \(MinC=\frac{2020}{2021}\Leftrightarrow x=2019\).

Bình luận (0)
 Khách vãng lai đã xóa
DV
Xem chi tiết
PL
Xem chi tiết
ZZ
21 tháng 11 2019 lúc 17:25

\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}\)

\(=\frac{\left|x+2019\right|+2021-1}{\left|x-2019\right|+2021}\)

\(=1-\frac{1}{\left|x-2019\right|+2021}\)

\(\ge1-\frac{1}{\left|2019-2019\right|+2021}=1-\frac{1}{2021}=\frac{2020}{2021}\)

Dấu "=" xảy ra tại \(x=2019\)

Bình luận (0)
 Khách vãng lai đã xóa
Me
21 tháng 11 2019 lúc 18:43

                                                            Bài giải

\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)

A đạt GTNN khi \(\frac{1}{\left|x-2019\right|+2021}\) đạt GTLN \(\Leftrightarrow\text{ }\left|x-2019\right|+2021\) đạt GTNN

          Mà \(\left|x-2019\right|\ge0\) Dấu " = " xảy ra khi x - 2019 = 0 => x = 2019

\(\Rightarrow\text{ }\left|x-2019\right|+2021\ge2021\)

\(\Rightarrow\text{ }\frac{1}{\left|x-2019\right|+2021}\le\frac{1}{2021}\)

\(\Rightarrow\text{ }A\ge1-\frac{1}{2021}=\frac{2020}{2021}\)

Bình luận (0)
 Khách vãng lai đã xóa
VD
Xem chi tiết
AH
27 tháng 12 2023 lúc 23:48

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$

$|x-2020|\geq 0$ với mọi $x$

$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$

Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$

Tức là $x=2020$

Bình luận (0)
H24
Xem chi tiết
NL
7 tháng 1 2024 lúc 10:54

Áp dụng BĐT trị tuyệt đối:

\(M=\left|x-2019\right|+\left|2021-x\right|+2020\left|x-2020\right|\)

\(M\ge\left|x-2019+2021-x\right|+2020\left|x-2020\right|=2+2020\left|x-2020\right|\ge2\)

\(\Rightarrow M_{min}=2\) khi \(\left\{{}\begin{matrix}\left(x-2019\right)\left(2021-x\right)\ge0\\\left|x-2020\right|=0\end{matrix}\right.\) \(\Rightarrow x=2020\)

Bình luận (0)
ND
Xem chi tiết
DH
8 tháng 1 2020 lúc 9:19

Đặt \(S=\left|x+2019\right|+\left|x+2020\right|+\left|x+2021\right|\)

\(=\left(\left|x+2019\right|+\left|x+2021\right|\right)+\left|x+2020\right|\)

\(=\left(\left|x+2019\right|+\left|-x-2021\right|\right)+\left|x+2020\right|\ge\left|x+2019+\left(-x-2021\right)\right|+0=0\)

Dấu " = " xảy ra \(\Leftrightarrow x=-2020\)

Vậy \(Min_S=2\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NX
12 tháng 1 2021 lúc 22:16

Giá trị nhỏ nhất của A = -40

x = 2035

Giá trị nhỏ nhất của B = -207

x = 1

Giá trị nhỏ nhất của C = 4

x = -1

Giá trị nhỏ nhất của D = -2

x ∈ {-2;-1}

Giá trị nhỏ nhất của E = -2021

x = 2019

y = -2020

Bình luận (0)