Cho ba tỉ số bằng nhau là:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Chứng minh rằng a=b=c
Cho a , b , c là ba số hữu tỉ thỏa mãn abc = 1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}.\)Chứng minh rằng một trong ba số a , b , c là bình phương của một số hữu tỉ .
1/ Cho tỉ lệ thức: \(\frac{ab}{\overline{bc}}=\frac{b}{c}\)với \(c\ne0\)
Chứng minh tỉ lệ thức \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
2/ Cho dãy tỉ số bằng nhau: \(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)
Chứng minh rằng a = b = c
2) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)
\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)
=> a = b = c (đpcm)
soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó
1) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{ab}{bc}=\frac{a}{c}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\left(đpcm\right)\)
cho \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
chứng minh trong ba số a,b,c tồn tại hai số bằng nhau
\(abc\ne0\)
\(abc\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)=abc\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
\(\Leftrightarrow a^2c+ab^2+bc^2=b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-b^2c+ab^2-a^2b+bc^2-ac^2=0\)
\(\Leftrightarrow c\left(a-b\right)\left(a+b\right)-ab\left(a-b\right)-c^2\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(ac+bc-ab-c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(c\left(a-c\right)-b\left(a-c\right)\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(c-b\right)\left(a-c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\) (đpcm)
Cho a, b, c là ba số khác nhau, chứng minh rằng:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
Ta có : \(\frac{b-c}{\left(a-b\right)\left(a+c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{-\left(a-b\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{-\left(b-c\right)+\left(b-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{-\left(c-a\right)+\left(c-b\right)}{\left(c-a\right)\left(c-b\right)}\)
\(=-\frac{1}{a-c}+\frac{1}{a-b}+\frac{-1}{b-a}+\frac{1}{b-c}+\frac{-1}{c-b}+\frac{1}{c-a}\)
\(=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
Cho dãy tỉ số bằng nhau \(\frac{\text{ab}}{b}=\frac{bc}{c}=\frac{ca}{a}\). Chứng minh rằng \(a=b=c\)
ĐKXĐ : a;b;c \(\ne0\)
Khi đó \(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}\)
<=> \(a.\frac{b}{b}=b.\frac{c}{c}=c.\frac{a}{a}\)
<=> \(a=b=c\)
Từ: \(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\left(đk: a,b,c>0; a+b+c\ne0\right)\)
Có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\left(a+b+c\ne0\right)\Leftrightarrow a=b=c\)
Có: \(\frac{ab}{b}=a\)
\(\frac{bc}{c}=c\)
\(\frac{ca}{a}=c\)
Do đó, a=b=c (sai thông cảm)
Cho a,b,c là ba số khác nhau đôi một và \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
Chứng minh rằng : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
từ đề bài \(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(a-b\right)\left(c-a\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)
\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)
Tương tự : \(\hept{\begin{cases}\frac{b}{\left(c-a\right)^2}=\frac{-cb+c^2-a^2+ab}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\\\frac{c}{\left(a-b\right)^2}=\frac{-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\end{cases}}\)
Cộng vế với vế ta được : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\)
\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ab-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}=0\)(đpcm)
1/ Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
a/ \(\frac{a+b}{b}=\frac{c+d}{d}\)
b/ \(\frac{a-b}{b}=\frac{c-d}{d}\)
2/ Cho ba tỉ số bằng nhau: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\).Tìm giá trị của mỗi tỉ số đó?
3/ Cho tỉ lệ thức: \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) . Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)
4/ Cho 4 số: \(a_1;a_2;a_3;a_4\)thỏa mãn: \(a_2^2=a_1.a_3\)và \(a_3^2=a_2.a_4\). Chứng minh rằng: \(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
\(1,\)
\(a,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\left(đpcm\right)\)
\(b,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
\(\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(2,\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)
\(3,\)
\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)
\(\Rightarrow\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{6b}{6d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(4,\) https://hoc24.vn/hoi-dap/question/157445.html
cho \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
chứng minh rằng trong 3 số a,b,c tồn tại hai số bằng nhau
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
\(\frac{a^2c}{abc}+\frac{b^2a}{abc}+\frac{c^2a}{abc}=\frac{b^2c}{abc}+\frac{c^2a}{abc}+\frac{a^2b}{abc}\)
\(=>a^2c+b^2a+c^2a=b^2c+c^2a+a^2b\)
Vì \(c^2a=c^2a\)=> \(a^2c+b^2a=b^2c+a^2b\)
=>đpcm, hình như mình giải thiếu điều kiện thì phải
ừ nhỉ, chỗ phần quy đồng
\(\frac{a^2c}{abc}+\frac{b^2a}{abc}+\frac{c^2b}{abc}=\frac{b^2c}{abc}+\frac{c^2a}{abc}+\frac{a^2b}{abc}\)
\(a^2c+b^2a+c^2b=b^2c+c^2a+a^2b\)
đến chỗ này tịt , bài nãy còn rút gọn được chứ phần này thì không
thôi, bạn suy nghĩ tiếp chỗ này nhé
Cho a,b,c là ba số thực đôi một khác nhau thỏa mãn hệ thức:\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\).
Chứng minh rằng: \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)