\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4};xyz=-108\)
help Nhi nha! ^.^ Iu mọi người nhìu...
Bài 1 : Tìm x , y , z biết : x +2y + 3z = \(\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)
cho \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}tinhM=\frac{x+2y-3z}{x-2y+3z}\)
Bài 1 : Tìm x , y , z biết : x + 2y + 3z = \(\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)
Đặt \(x+2y+3z=A\)
Áp dụng tính chất của dãy tỉ số bằng nhau có :
\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}=\frac{x+2y+2y+3z+3z+x}{x+2y+2y+3z+3z+x-3-3-3}\)
\(\Rightarrow A=\frac{2A}{2A-9}\)
\(\Rightarrow\frac{2}{2A-9}=1\)
\(\Rightarrow2A-9=2\)
\(\Rightarrow A=\frac{11}{2}\)
Cũng áp dụng tính chất của dãy tỉ số bằng nhau và có :
\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)\(=\frac{\left(x+2y\right)+\left(2y+3z\right)-\left(3z+x\right)}{\left(2y+3z-3\right)+\left(3z+x-3\right)-\left(x+2y-3\right)}=\frac{4y}{4y-3}=\frac{11}{2}\)
\(\Rightarrow2.\left(4y\right)=11.\left(4y-3\right)\)
\(\Rightarrow8y=44y-33\)
\(\Rightarrow36y=33\)
\(\Rightarrow y=\frac{11}{12}\)
\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)\(=\frac{\left(x+2y\right)-\left(2y+3z\right)+\left(3z+x\right)}{\left(2y+3z-3\right)-\left(3z+x-3\right)+\left(x+2y-3\right)}=\frac{2x}{2x-3}=\frac{11}{2}\)
\(\Rightarrow2.\left(2x\right)=11\left(2x-3\right)\)
\(\Rightarrow4x=22x-33\)
\(\Rightarrow18x=33\)
\(\Rightarrow x=\frac{33}{18}=\frac{11}{6}\)
\(\Rightarrow3z=A-x-2y=\frac{11}{2}-\frac{11}{6}-\frac{2.11}{12}=\frac{11}{6}\)
\(\Rightarrow z=\frac{11}{6}:3=\frac{11}{18}\)
Vậy ...
Cho mình bổ sung : \(TH2:A=0\)
\(\Rightarrow2x=4y=6z=0\)
\(\Rightarrow x=y=z=0\)
Vậy ....
Cho \(\frac{3x-2y}{4}=\frac{4y-3z}{2}\) \(=\frac{2z-4x}{3}\) và x-2y+3z=8.tìm x,y,z
Ta có : \(\frac{3x-2y}{4}=\frac{4y-3z}{2}=\frac{2z-4x}{3}\)
\(\Leftrightarrow\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}=\frac{12x-8y+8y-6z+6z-12x}{16+4+9}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{3x-2y}{4}=0\\\frac{4y-3z}{2}=0\\\frac{2z-4x}{3}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}3x=2y\\4y=3z\\2z=4x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{4}\\\frac{x}{2}=\frac{z}{4}\end{cases}}\) \(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x-2y+3z}{2-6+12}=\frac{8}{8}=1\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{3}=1\\\frac{z}{4}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)
Vậy : \(\left(x,y,z\right)=\left(2,3,4\right)\)
Tinh tong : S= x+2y +3z, biet rang : \(\frac{1}{x+2y}+\frac{1}{2y+3z}+\frac{1}{3z+z}=\frac{12x}{2y+3z}+\frac{24y}{3z+x}-\frac{36z}{x+2y}=2016\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y+3z=-10
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x - 2y + 3z = 14
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{8}{8}=1\)
=> \(\hept{\begin{cases}\frac{x-1}{2}=1\\\frac{y-2}{3}=1\\\frac{z-3}{4}=1\end{cases}}\) => \(\hept{\begin{cases}x-1=2\\y-2=3\\z-3=4\end{cases}}\) => \(\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)
Vậy ...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-2y+3z\right)-1+4-9}{2-6+12}=\frac{14-6}{8}=\frac{8}{8}=1\) 1
Suy ra x-1=2 = > x=3
y-2=3 = > y=5
z-3=4 = > z=7
1.cho đa thức A=-4x\(^5y^3+x^4y^2-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
a.thu gọn rồi tìm bậc đa thức A
b.tìm đa thức B biết rằng B-2x\(^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
2.thu gọn các đơn thức sau rồi chỉ rõ hệ số phần biến và tìm bậc
a.A=x\(^3.\left(\frac{-5}{4}x^2y\right).\left(\frac{2}{5}x^3y^4\right)\)
b.B=\(\left(\frac{-3}{4}x^5y^4\right).\left(xy^2\right).\left(\frac{-8}{9}x^2y^5\right)\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}vàx-2y+3z=14\)
Ta có
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Áp dumhj tc của dãy tỉ số bằng nhau ta có
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{8}{8}=1\)
\(\Rightarrow\begin{cases}x=3\\y=5\\z=7\end{cases}\)
Giải:
Ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{8}{8}=1\)
+) \(\frac{x-1}{2}=1\Rightarrow x=3\)
+) \(\frac{2y-4}{6}=1\Rightarrow y=5\)
+) \(\frac{3z-9}{12}=1\Rightarrow z=7\)
Vậy x = 3 ; y = 5 ; z = 7
bn nhấn vào câu hỏi tương tự
có mấy câu giống bài này
\(\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{4}vàx-2y+3z=46\)
Bài yêu cầu tìm x; y hả bạn ??
Đặt
\(\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{4}=k\)
⇔ \(\left\{{}\begin{matrix}x-1=2k\\y+2=3k\\z-3=4k\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=2k+1\\y=3k-2\\z=4k+3\end{matrix}\right.\) (1)
Thay x = 2k + 1 ; y = 3k - 2 ; z = 4k + 3 vào x - 2y+ 3z = 46 ta có
(2k + 1 ) - 2 . ( 3k - 2 ) + 3 . (4k + 3 ) = 46
⇔ 2k + 1 - 6k + 4 + 12k + 9 = 46
⇔ 8k + 14 = 46
⇔ 8k = 32
⇔ k = 4 (2)
Từ (1) và (2) ⇔ \(\left\{{}\begin{matrix}x=2.4+1=8+1=9\\y=3.4-2=12-2=10\\z=4.4+3=16+3=19\end{matrix}\right.\)
Vậy x = 9 ; y = 10 ; z = 19
Học tốt
Ta có: \(\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{4}\)
\(\Leftrightarrow\frac{x-1}{2}=\frac{2\left(y+2\right)}{6}=\frac{3\left(z-3\right)}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{x-1}{2}=\frac{2\left(y+2\right)}{6}=\frac{3\left(z-3\right)}{12}=\frac{x-1}{2}=\frac{2y+4}{6}=\frac{3z-9}{12}=\frac{x-1-2y-4+3z-9}{2-6+12}=\frac{46-14}{8}=\frac{32}{8}=4\)
Do đó:
\(\left\{{}\begin{matrix}\frac{x-1}{2}=4\\\frac{y+2}{3}=4\\\frac{z-3}{4}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=8\\y+2=12\\z-3=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=10\\z=19\end{matrix}\right.\)
Vậy: (x,y,z)=(9;10;19)