Bài yêu cầu tìm x; y hả bạn ??
Đặt
\(\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{4}=k\)
⇔ \(\left\{{}\begin{matrix}x-1=2k\\y+2=3k\\z-3=4k\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=2k+1\\y=3k-2\\z=4k+3\end{matrix}\right.\) (1)
Thay x = 2k + 1 ; y = 3k - 2 ; z = 4k + 3 vào x - 2y+ 3z = 46 ta có
(2k + 1 ) - 2 . ( 3k - 2 ) + 3 . (4k + 3 ) = 46
⇔ 2k + 1 - 6k + 4 + 12k + 9 = 46
⇔ 8k + 14 = 46
⇔ 8k = 32
⇔ k = 4 (2)
Từ (1) và (2) ⇔ \(\left\{{}\begin{matrix}x=2.4+1=8+1=9\\y=3.4-2=12-2=10\\z=4.4+3=16+3=19\end{matrix}\right.\)
Vậy x = 9 ; y = 10 ; z = 19
Học tốt
Ta có: \(\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{4}\)
\(\Leftrightarrow\frac{x-1}{2}=\frac{2\left(y+2\right)}{6}=\frac{3\left(z-3\right)}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{x-1}{2}=\frac{2\left(y+2\right)}{6}=\frac{3\left(z-3\right)}{12}=\frac{x-1}{2}=\frac{2y+4}{6}=\frac{3z-9}{12}=\frac{x-1-2y-4+3z-9}{2-6+12}=\frac{46-14}{8}=\frac{32}{8}=4\)
Do đó:
\(\left\{{}\begin{matrix}\frac{x-1}{2}=4\\\frac{y+2}{3}=4\\\frac{z-3}{4}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=8\\y+2=12\\z-3=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=10\\z=19\end{matrix}\right.\)
Vậy: (x,y,z)=(9;10;19)