Chứng tỏ đa thức sau vô nghiệm:
\(A\left(x\right)=2x^2-6x+2020\)
Giúp mình với ạ!
Chứng tỏ đa thức sau vô nghiêm
\(f\left(x\right)=x^2-6x+10\)
f(x)=x^2-6x+9+1=(x-3)^2+1>=1>0 với mọi x
=>F(x) vô nghiệm
\(f\left(x\right)=x^2-6x+9+1=\left(x-3\right)^2+1\)
Do \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left(x-3\right)^2+1>0\) ;\(\forall x\)
\(\Rightarrow f\left(x\right)\) vô nghiệm
Cho đa thức F(x) = 2x- 4
a, Tìm nghiệm của F(x)
b, Chứng tỏ đa thức G(x) \(=F\left(x\right)+x^2-x+6\) vô nghiệm
\(a.\)
\(f\left(x\right)=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow x=2\)
\(b.\)
\(g\left(x\right)=2x-4+x^2-x+6\)
\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
PTVN
Chứng tỏ đa thức sau vô nghiệm; \(\left(2x-1\right)^2+2018\)
Ta có :
\(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\)\(\left(2x-1\right)^2+2018\ge0+2018=2018>0\)
Vậy đa thức \(\left(2x-1\right)^2+2018\) vô nghiệm
Chúc bạn học tốt ~
cho đa thức p(x)=-8x^3+3x^4-x^2+5x^2-2020+6x^3-3x^4+2025+2x^3 chứng minh đa thức p(x) vô nghiệm
P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025
=4x^2+5>=5>0 với mọi x
=>P(x) không có nghiệm
Cho 2 đa thức:
\(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5-10+x\)
\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)
Chứng tỏ rằng x=1 không phải là nghiệm của đa thức A(x) nhưng là nghiệm của đa thức B(x)
Thay x=1 vào A(x) tính được A(x)=-17 nên x=1 ko là nghiệm của A(x)
Thay x=1 vào B(x), B(x)=0 nên x=1 là nghiệm B(x)
Chứng minh đa thức 2x² - 3x+ 5 vô nghiệm giúp mình với ạ
2x^2-3x+5
=2(x^2-3/2x+5/2)
=2(x^2-2*x*3/4+9/16+31/16)
=2(x-3/4)^2+31/8>=31/8>0 với mọi x
=>2x^2-3x+5 không có nghiệm
Moi người ơi giúp mình giải với nhé
Chứng minh các đa thức sau vô nghiệm:
A= 3x^3—x+1
B= 4x—2x^2—5
Hai đề này khác nhau mọi người ạ
Chứng tỏ các đa thức sau vô nghiệm
a,x2+2x+2
b,-x2+2x-3
a) Ta có \(x^2+2x+2=\left(x^2+2x+1\right)\)\(+1=\left(x+1\right)^2+1\)Ma \(\left(x+1\right)^2\ge0\forall x\)
Nen \(\left(x+1\right)^2+1>0\). Vậy đa thức trên vô nghiệm
b) \(-x^2+2x-3=\)\(-\left(x^2-2x+1\right)-2\)\(=-\left(x-1\right)^2-2\)
Ma \(-\left(x-1\right)^2\le0\forall x\)Nen \(-\left(x-1\right)^2-2< 0\)
Vậy đa thức trên vô nghiệm
Cho hai đa thức :
\(P\left(x\right)=-2x^2+3x^4+x^3+x^2-\dfrac{1}{4}x\\ Q\left(x\right)=x^4+3x^2-4-4x^3-2x^2\)
Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
thu gọn
\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)
\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)
Lời giải:
Ta thấy:
$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$
$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$
Do đó $x=0$ không phải nghiệm của $Q(x)$