Những câu hỏi liên quan
HH
Xem chi tiết
HH
28 tháng 10 2016 lúc 15:16

Ai nhanh minh  cho

Bình luận (0)
LV
15 tháng 10 2021 lúc 8:28

\(a)\)Vì \(p\)là số nguyên tố

\(\Leftrightarrow\)\(p\in\left\{2;3;5;7;...\right\}\)

\(+)\)\(p=2\Leftrightarrow p+2=2+2=4\)( hợp số ) ( loại )

\(+)\)\(p=3\Leftrightarrow\hept{\begin{cases}p+2=3+2=5\\p+3=3+10=13\end{cases}}\)( thỏa mãn )

\(+)\)\(p>3\)mà \(p\)là số nguyên tố nên \(p\)có 2 dạng:

\(+)\)\(p=3k+1\left(k\in N\right)\Leftrightarrow p+2=3k+3⋮3\)( hợp số )

\(+)\)\(p=3k+2\Leftrightarrow p+10=3k+12⋮3\)( hợp số )

Vậy \(p=3\)\(\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LV
15 tháng 10 2021 lúc 8:38

\(b)\)Với \(p=2\Rightarrow p+10=2+10=12\)( ko là số nguyên tố  )   \(\Rightarrow\) ( loại )

Với \(p=3\Rightarrow p+10=3+10=13\)

\(\Rightarrow\)\(p+20=20+3=23\)( đều là các số nguyên tố )   \(\Rightarrow\) ( chọn )

Nếu \(p\)chia cho 3 dư 1 \(\Rightarrow\)\(p=3k+1\left(k\in N\right)\)

\(\Rightarrow\)\(p+20=3k+1+20\)

\(=\)\(3k+21=3\left(k+7\right)⋮3\)

( Vì \(3⋮3;k\in N\Rightarrow k+7\in N\))

\(\Rightarrow\)\(3\left(k+7\right)\)là hợp số ; hay \(p+20\)là hợp số \(\Rightarrow\)( loại )

Nếu \(p\)chia 3 dư 2 \(\Rightarrow\)\(p=3k+2\left(k\in N\right)\)

\(\Rightarrow\)\(p+10=3k+2+10\)

\(=\)\(3k+12=3\left(k+4\right)⋮3\)

( Vì \(3⋮3;k\in N\Rightarrow k+4\in N\))

\(\Rightarrow\)\(3\left(k+4\right)\)là hợp số; hay \(p+10\)là hợp số \(\Rightarrow\)( loại )

Vậy \(p=3\)thỏa mãn đề bài \(\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
DM
Xem chi tiết
VN
8 tháng 4 2016 lúc 17:43

vì p là số nguyên tố nên ta xét :

-p=2=>p+8=10laf hợp số (loại)

-p=3=>p+8=11      .Đều là số nguyên tố (t/m) 

           p+10=13

-p>3=>p có dạng 3k+1;3k+2(k thuộc N) (vì p là số nguyên tố)

*nếu p=3k+1=>p+8=3k+1+8=3k+9 chia hết cho 3 và 3k+9>3=>p+8 là hợp số (loại)

*nếu p=3k+2=>p+10=3k+2+10=3k+12 chia hết cho 3 và 3k+2>3=>p+10 là hợp số (loại)

                                  Vậy p=3

Bình luận (0)
GM
Xem chi tiết
MH
Xem chi tiết
NL
12 tháng 1 2022 lúc 0:02

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

Bình luận (0)
NL
12 tháng 1 2022 lúc 15:09

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

Bình luận (9)
H24
Xem chi tiết
NT
26 tháng 7 2023 lúc 17:05

Bài 1 :

a) \(123456789+729=\text{123457518}⋮2\)

⇒ Số trên là hợp số

b)\(5.7.8.9.11-132=\text{27588}⋮2\)

⇒ Số trên là hợp số

Bài 2 :

a) \(P+2\&P+4\) ;à số nguyên tố

\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)

\(\Rightarrow P=-3\)

Câu b tương tự

 

Bình luận (0)
TT
26 tháng 7 2023 lúc 16:57

a,123456789+729=123457518(hợp số)

b,5x7x8x9x11-132=27588(hợp số)

Bài 2,

a,Nếu P=2=>p+2=4 và p+4=6 (loại)

Nếu P=3=>p+2=5 và p+4=7(t/m)

P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)

Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)

Nếu p=3k+2=>p+4=3k+6⋮3(loại)

Vậy p=3 thỏa mãn đề bài

b,Nếu p=2=>p+10=12 và p+14=16(loại)

Nếu p=3=>p+10=13 và p+14=17(t/m)

Nếu p >3=>p có dạng 3k+1 hoặc 3k+2

Nếu p=3k+1=>p+14=3k+15⋮3(loại)

Nếu p=3k+2=>p+10=3k+12⋮3(loại)

Vậy p=3 thỏa mãn đề bài.

Bình luận (0)
NN
Xem chi tiết
YA
26 tháng 11 2016 lúc 20:43

a)

+) Nếu p = 2 thì p + 10 = 2 + 10 = 12 → Hợp số ( loại)

+) Nếu p = 3 thì p + 10 = 3 + 10 = 13 ; p + 14 = 17 → Số nguyên tố ( thỏa mãn )

+) Nếu p > 3 thì p có dạng : 3k + 1 hoặc 3k + 2

- Với p = 3k + 1 thì p + 14 = 3k + 1+ 14 = 3k + 15 chia hết cho 3 → Hợp số ( loại )

- Với p = 3k + 2 thì p + 10 = 3k + 2 +10 = 3k + 12 chia hết cho 3 → Hợp số (loại)

Vậy p = 3

 

Bình luận (0)
CS
1 tháng 1 2017 lúc 22:59

a)

- Nếu p = 2 => p + 10 = 2 + 10 = 12 là hợp số

=> p = 2 (loại)

- Nếu p = 3 => p + 10 = 3 + 10 = 13 là số nguyên tố

p + 14 = 3 + 14 = 17 là số nguyên tố

- Nếu p > 3 ; p là số nguyên tố thì p có dạng 3k + 1 và 3k + 2

+ p = 3k + 1 => p + 14 = 3k + 1 + 14 = 3k + 15 \(⋮\)3 là hợp số

=> p = 3k + 1 (loại)

+ p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3 là hợp số

=> p = 3k + 2 (loại)

Vập p = 3

b)

- Nếu p = 2 => p + 2 = 2 + 2 = 4 là hợp số

=> p = 2 (loại)

- Nếu p = 3 => p + 6 = 3 + 6 = 9 là hợp số

=> p = 3 (loại)

- Nếu p = 5 => p + 2 = 5 + 2 = 7 là số nguyên tố

p + 6 = 5 + 6 =11 là số nguyên tố

p + 8 = 5 + 8 = 13 là số nguyên tố

=> p = 5 (chọn)

- Nếu p > 5; p là số nguyên tố thì p có dạng là 5k - 1

p = 5k - 1 => p + 6 = 5k - 1 + 6 = 5k + 5 \(⋮\)5 là hợp số

=> p = 5k - 1 (loại)

Vập p = 5

Mình không biết phần b mình làm đúng không nữa!

Chúc bạn học tốt!

Bình luận (0)
KM
Xem chi tiết
HD
Xem chi tiết
NH
18 tháng 4 2020 lúc 12:37

p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.

p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )

Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
DA
15 tháng 11 2017 lúc 21:20

Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số. 
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số. 
Vậy p = 3. 
2. 
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007. 
Vậy r(x) = 1007x + 1007. 
3. 
Với a,b > 0, dùng bất đẳng thức CauChy thì có 
(a + b)/4 >= can(ab)/2 (1), 
2(a + b) + 1 >= 2can[2(a + b)]. 
Dùng bất đẳng thức Bunhiacopski thì có 
can[2(a + b)] >= can(a) + can(b); 
thành thử 
2(a + b) + 1 >= 2[can(a) + can(b)] (2). 
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có 
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)], 
hay 
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a). 
Dấu bằng đạt được khi a = b = 1/4.

Bình luận (0)
TN
17 tháng 11 2017 lúc 8:19

Đáp số : 3

Bình luận (0)
NA
19 tháng 11 2020 lúc 20:24

a) Nếu P = 2 thì P + 10 = 2 + 10= 12 > 3 và chia hết cho 3 suy ra P + 10 là HS ( loại )

    Nếu P = 3 thì+) + 10 = 3 + 10 = 13 > 3 và ko chia hết cho 3 suy ra P + 10 là SNT( chọn)

                         +) + 20 = 3 + 20 = 23 > 3 và chia hết cho 3 suy ra P + 20 là SNT ( chọn )

    Nếu P là SNT > 3 suy ra P có dạng 3k+1, 3k+2

    +) Khi P = 3k + 1 thì P + 20 = 3k + 1 + 20 = 3k + 21 = 3.(k + 7) > 3 và chia hết cho 3 suy ra P + 20 là HS ( loại )

    +) Khi P = 3k + 2 thì P + 10 = 3k + 2 + 10 = 3k + 12 = 3.(k+4) > 3 và chia hết cho 3 suy ra P + 10 là Hs ( loại )

                            Vậy P = 3

 Đề bài câu b phải là P + 2 và P - 2 nhé!

Bình luận (0)
 Khách vãng lai đã xóa