Những câu hỏi liên quan
H24
Xem chi tiết
HP
16 tháng 3 2021 lúc 18:55

1.

ĐK: \(x\ne7;x\ne-1;x\ne3\)

\(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\left(1\right)\)

TH1: \(x< -1\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\ge x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\ge x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\ge0\)

\(\Leftrightarrow\) Bất phương trình đúng với mọi \(x< -1\)

TH2: \(-1< x< 3\)

\(\left(1\right)\Leftrightarrow\left(3-x\right)\left(2x-5\right)\ge\left(7-x\right)\left(x+1\right)\)

\(\Leftrightarrow-2x^2+11x-15\ge-x^2+6x+7\)

\(\Leftrightarrow-x^2+5x-22\ge0\)

\(\Rightarrow\) vô nghiệm

TH3: \(3< x< 7\)

Khi đó \(\dfrac{2x-5}{x^2-6x-7}\le0\)\(\dfrac{1}{x-3}>0\)

\(\Rightarrow\) Bất phương trình đúng với mọi \(3< x< 7\)

TH4: \(x>7\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\le x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\le x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\le0\)

\(\Rightarrow\) vô nghiệm

Vậy ...

Các bài kia tương tự, chứ giải ra mệt lắm.

Bình luận (0)
8D
Xem chi tiết
HP
5 tháng 4 2022 lúc 9:06

a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\) \(\Leftrightarrow\) \(6\left(\dfrac{2-x}{3}-x-2\right)\le6\left(\dfrac{x-17}{2}\right)\) \(\Leftrightarrow\) 4-2x-6x-12\(\le\)3x-51 \(\Leftrightarrow\) -2x-6x-3x\(\le\)-51-4+12 \(\Leftrightarrow\) -11x\(\le\)-43 \(\Rightarrow\) x\(\ge\)43/11.

b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\) \(\Leftrightarrow\) \(12\left(\dfrac{2x+1}{3}+\dfrac{4-x}{4}\right)\le12\left(\dfrac{3x+1}{6}+\dfrac{4-x}{12}\right)\) \(\Leftrightarrow\) 8x+4+12-3x\(\le\)6x+2+4-x \(\Leftrightarrow\) 8x-3x-6x+x\(\le\)2+4-4-12 \(\Leftrightarrow\) 0x\(\le\)-10 (vô lí).

Bình luận (0)
KL
5 tháng 4 2022 lúc 9:14

a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\)

\(\Leftrightarrow2\left(2-x\right)-6\left(x+2\right)\le3\left(x-17\right)\)

\(\Leftrightarrow4-2x-6x-12\le3x-51\)

\(\Leftrightarrow-11x\le-43\)

\(\Leftrightarrow x\ge\dfrac{43}{11}\)

Vậy S = {\(x\) | \(x\ge\dfrac{43}{11}\) }

b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)

\(\Leftrightarrow4\left(2x+1\right)-3\left(x-4\right)\le2\left(3x+1\right)-\left(x-4\right)\)

\(\Leftrightarrow8x+4-3x+12\le6x+2-x+4\)

\(\Leftrightarrow0x\le-10\) (vô lý)

Vậy \(S=\varnothing\)

Bình luận (0)
DK
Xem chi tiết
HP
Xem chi tiết
MT
Xem chi tiết
NL
20 tháng 7 2021 lúc 16:49

a.

ĐKXĐ: \(x\ge0\)

\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-12x+5=0\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
20 tháng 7 2021 lúc 16:49

b.

ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)

\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)

\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)

\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)

\(\Leftrightarrow3x^2-4=0\)

\(\Leftrightarrow...\)

Bình luận (0)
H24
Xem chi tiết
TH
30 tháng 7 2021 lúc 15:36

"và" là dấu ngoặc nhọn nên không gộp lại được nha, "hoặc" là dấu ngoặc vuông mới gộp được, nhưng nếu BPT của bạn là dấu ngoặc vuông thì BPT này vô nghiệm

Chúc bn học tốt!

Bình luận (3)
AH
30 tháng 7 2021 lúc 16:45

Lời giải:
Dấu ngoặc này biểu thị cả hai đồng thời xảy ra

Từ BPT (1) ta có \(x\geq \frac{1}{2}\). Từ BPT (2) ta có \(x< \frac{1}{2}\)

\(\Rightarrow \frac{1}{2}\leq x< \frac{1}{2}\Rightarrow \frac{1}{2}< \frac{1}{2}\) (vô lý)

Vậy bpt vô nghiệm.

Bình luận (5)
AH
30 tháng 7 2021 lúc 18:05

Lý do ra $0< x< 2$ thì em vẽ thử cái trục số ra.

$\frac{1}{2}\leq x< 2$ kết hợp cùng $0< x< \frac{1}{2}$ thì thấy khoảng biểu diễn $x$ chính là $0< x< 2$

Bình luận (0)
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:31

a) Tam thức \(f(x) =  - 5{x^2} + x - 1\) có \(\Delta  =  - 19 < 0\), hệ số \(a =  - 5 < 0\) nên f(x) luôn âm (cùng dấu với a) với mọi x, tức là \(\)\( - 5{x^2} + x - 1 < 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm

b) Tam thức \(g(x) = {x^2} - 8x + 16\) có \(\Delta  = 0\), hệ số a=1>0 nên g(x) luôn dương (cùng dấu với a) với mọi \(x \ne 4\), tức là \({x^2} - 8x + 16 > 0\) với mọi \(x \ne 4\)

Suy ra bất phương trình có nghiệm duy nhất là x = 4

c) Tam thức \(h(x) = {x^2} - x + 6\) có \(\Delta  =  - 23 < 0\), hệ số a=1>0 nên h(x) luôn dương (cùng dấu với a) với mọi x, tức là \({x^2} - x + 6 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm.

Bình luận (0)
PT
Xem chi tiết
H24
22 tháng 3 2021 lúc 22:46

$ĐKXĐ:x \neq -4;-5;-6;-7$

$pt⇔\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}$

$⇔\dfrac{1}{(x+4)(x+5)}+\dfrac{1}{(x+5)(x+6)}+\dfrac{1}{(x+6)(x+7)}=\dfrac{1}{18}$

$⇔\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}$

$⇔\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}$

$⇔\dfrac{3}{(x+4)(x+7)}=\dfrac{1}{18}$

$⇔x^2+11x+28=54$

$⇔x^2+11x-26=0$

$⇔x^2-2x+13x-26=0$

$⇔(x-2)(x+13)=0$

$⇔$ \(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)(t/m)

Vậy phương trình đã cho có tập nghiệm $S=(2;-13)$

 

Bình luận (0)
H24
Xem chi tiết
NT
16 tháng 6 2023 lúc 0:02

a: =>(x-1)(3x-4)>0

=>x>4/3 hoặc x<1

b: =>x^3-3x^2-10x^2+30x+12x-36>0

=>(x-3)(x^2-10x+12)>0

Th1: x-3>0và x^2-10x+12>0

=>x>5+căn 13

TH2: x-3<0 và x^2-10x+12<0

=>x<3 và 5-căn 13<x<5+căn 13

=>3<x<5+căn 13

Bình luận (0)