so sánh
a) 202303 và 303202
b) 321 và 231
c) 371320 và 111979
So sánh : 111979 và 371320
Ta có : \(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\)
\(37^{1320}=\left(37^2\right)^{660}=1329^{660}\)
Vì \(1329^{660}>1331^{660}\) nên \(11^{1979}< 37^{1320}\)
111979<111980=1331660
371320=1369660
Vì 1369660>1331660 nên 371320>111979
Bài 2. So sánh.
a . 2300 và 3200
b . 3500 và 7300
c . 85 và 3 . 47
d . 202303 và 303202
e. 9920 và 999910
f.111979 và 371320
g. 1010 và 48 . 505
h. 199010 + 19909 và 199110
a: \(2^{300}=8^{100}\)
\(3^{200}=9^{100}\)
mà 8<9
nên \(2^{300}< 3^{200}\)
b: \(3^{500}=243^{100}\)
\(7^{300}=343^{100}\)
mà 243<243
nên \(3^{500}< 7^{300}\)
1 so sánh
a) 2435 và 3.275 b)6255và 1257 c)202303 và 303202
d)85và 3.74 e)7812và 711 g)339và 1121 h)201010 +20109 và 201110
bn nào lm nhanh và đúng hộ mk vs mk thật sự đang cần gấp
a) \(243^5=\left(3^5\right)^5=3^{25}\)
\(3\cdot27^5=3\cdot\left(3^3\right)^5=3\cdot3^{15}=3^{16}\)
mà \(3^{25}>3^{16}\)
nên \(243^5>3\cdot27^5\)
b) \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
mà \(5^{20}< 5^{21}\)
nên \(625^5< 125^7\)
c) \(202^{303}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=\left(303^2\right)^{101}=91809^{101}\)
mà \(8242408^{101}>91809^{101}\)
nên \(202^{303}>303^{202}\)
So sánh: 202 303 và 303 202
A. 202 303 > 303 202
B. 202 303 < 303 202
C. 202 303 = 303 202
D. Không thể so sánh
Ý A nhé bạn
chúc học tốt
so sánh
202303 và 303202
202³⁰³ = (202³)¹⁰¹ = 8242408¹⁰¹
303²⁰² = (303²)¹⁰¹ = 91809¹⁰¹
Do 8242408 > 91809 nên 8282408¹⁰¹ > 91809¹⁰¹
Vậy 202³⁰³ > 303²⁰²
202303 & 303202
202303 = (2023)101 = 8242408101
303202 = (3032)101 = 91809101
⇒ 202303 > 303202
Bài 1: So sánh
1/ a) 2300 và 3200 b) 9920 và 999910 c) 3500 và 7300
d) 202303 và 303202 e) 10750 và 7375
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
c) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}>243^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
\(\left(d\right):202^{303}=\left(202^3\right)^{101}=8242408^{101}>303^{202}=\left(303^2\right)^{101}=91809^{101}\)
\(\left(e\right):107^{50}=\left(107^2\right)^{25}=11449^{25}< 73^{75}=\left(73^3\right)^{25}=389017^{25}\)
so sánh
a,1619 và 825
b,5100 và 3500
\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)
Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)
b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)
a: 16^19=(2^4)^19=2^76
8^25=(2^3)^25=2^75
mà 76>75
nên 16^19>8^25
b: 3^500=(3^5)^100=243^100>5^100
so sánh
a)3200 và 2300
b)540
và 350\(a) 3^{200}=(3^2)^{100}=9^{100}\\2^{300}=(2^3)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\) nên \(3^{200}>2^{300}\)
\(b) 5^{40}=(5^4)^{10}=625^{10}\\3^{50}=(3^5)^{10}=243^{10}\)
Vì \(625^{10}>243^{10}\) nên \(5^{40}>3^{50}\)
#\(Toru\)
a> \(3^{200}\) và \(2^{300}\)
Ta có:\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì 9>8 nên \(9^{100}>8^{100}\)
\(\Rightarrow\)\(3^{200}>2^{300}\)
b> \(5^{40}\) và \(3^{50}\)
Ta có:\(5^{40}=5^{4.10}=\left(5^4\right)^{10}=625^{10}\)
\(3^{50}=3^{5.10}=\left(3^5\right)^{10}=243^{10}\)
Vì 625 > 243 nên \(625^{10}>243^{10}\)
\(\Rightarrow\)\(5^{40}>3^{50}\)
`3^200=(3^2)^100=9^100`.
`2^300=(2^3)^100=8^100`.
`=> 2^300 < 3^200`.
`b, 5^40=(5^4)^10=625^10.`
`3^50=(3^5)^10=243^10`.
`=> 5^40 > 3^50`.
111979 và 321320
Sửa đề: \(37^{1320}\)
Ta có: \(11^{1979}< 11^{1980}=11^{3\cdot660}=1331^{660}\)
\(37^{1320}=37^{2\cdot660}=1369^{660}\)
mà \(1331^{660}< 1369^{6060}\)
nên \(11^{1979}< 37^{1320}\)
So sánh
a.548 và 2105 b.3310 và 250 c. 513100 và 1023 ngũ 90
a) \(5^{48}=\left(5^4\right)^{12}=625^{12}\)
\(2^{108}=\left(2^9\right)^{12}=512^{12}\)
Do \(625>512\Rightarrow625^{12}>512^{12}\) \(\Rightarrow5^{48}>2^{108}\) (1)
Lại có: \(108>105\Rightarrow2^{108}>2^{105}\) (2)
Từ (1) và (2) \(\Rightarrow5^{48}>2^{105}\)
b) \(2^{50}=\left(2^5\right)^{10}=32^{10}\)
Do \(33>32\Rightarrow33^{10}>32^{10}\)
Vậy \(33^{10}>2^{50}\)
c) Do \(513>512\Rightarrow513^{100}>512^{100}\) (1)
\(512^{100}=\left(2^9\right)^{100}=2^{900}\) \(=2^{10.90}=\left(2^{10}\right)^{90}=1024^{90}\) (2)
Do \(1024>1023\Rightarrow1024^{90}>1023^{90}\) (3)
Từ (1), (2) và (3) \(\Rightarrow513^{100}>1023^{90}\)