Chứng tỏ: 5/2+5/6+5/12+5/20+5/2450 <5
Giúp mình với ạ, cần gấp
Chứng minh 5/2+5/6+5/12+5/20+...+5/2450 < 5
\(=5\left(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\right)=\)
\(=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=\)
\(=5\left(1-\dfrac{1}{50}\right)\)
Ta có
\(1-\dfrac{1}{50}< 1\Rightarrow5\left(1-\dfrac{1}{50}\right)< 5\left(dpcm\right)\)
a) Cho A=5^2+5^3+5^4+…+5^19+5^20. Chứng tỏ A chia hết cho 6
b) Cho B=3+3^2+3^3+3^4+…+3^49+3^50. Chứng tỏ B chia hết cho 12
chứng tỏ C=5+5^2+5^3+...+5^20 chia hết cho 5 và 6
+) Chứng minh C⋮5
Có 5⋮5; \(\text{5}^{2}\)⋮5; \(\text{5}^{3}\)⋮5;...;\(\text{5}^{20}\)⋮5
⇒\(5+\text{5}^{2}+\text{5}^{3}+...+\text{5}^{20}\)⋮5
Vậy C⋮5
+) Chứng minh C⋮6
C=\(5+\text{5}^{2}+\text{5}^{3}+...+\text{5}^{20}\)
=\((5+\text{5}^{2}+\text{5}^{3}+\text{5}^{4})+...+(\text{5}^{17}+\text{5}^{18}+\text{5}^{19}+\text{5}^{20})\)
=\(5(1+\text{5}^{1}+\text{5}^{2}+\text{5}^{3})+...+\text{5}^{17}(1+\text{5}^{1}+\text{5}^{2}+\text{5}^{3})\)
=\((5+...+\text{5}^{17}).(1+\text{5}^{1}+\text{5}^{2}+\text{5}^{3})\)
=\((5+...+\text{5}^{17}).156\)
=\((5+...+\text{5}^{17}).26.6\)⋮\(6 \)
Vậy C⋮6
chứng tỏ rằng 5+5 mũ 2 +5 mũ 3 +5 mũ 4 +......5 mũ 29 + 5 mũ 20 chia hết cho 6
Đặt : \(A=5+5^2+5^3+...+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=\left(1+5\right)\left(5+5^3+...+5^{29}\right)\)
\(=6\left(5+5^3+...+5^{29}\right)⋮6\) (đpcm)
Bài giải
\(5+5^2+5^3+5^4+...+5^{29}+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=5\cdot6+5^3\cdot6+...+5^{29}\cdot6\)
\(=6\left(5+5^3+...+5^{29}\right)\text{ }⋮\text{ }6\)
\(\Rightarrow\text{ ĐPCM}\)
tính
C=1/2+5/6+11/12+...+2449/2450
C=1-1/2 +1-1/6 +1-1/12 +.............+1-1/2450
=(1+1+1+.........+1)-(1/2 +1/6 +1/12+..............+1/2450)
=49-(1/1.2 +1/2.3 +1/3.4+ ..................+1/49.50)
=49-(1-1/2 +1/2 -1/3+ 1/3- 1/4+............+1/49 -1/50)
=49-(1-1/50) =49-49/50=2401/50
Thực hiện các phép tính sau một cách hợp lí :
\(\left(\frac{5}{12}+1\frac{4}{3}-0,25\right):\frac{5}{8}+0,15\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+........+\frac{1}{2352}+\frac{1}{2450}\)
câu 2:
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{2450}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
Cho tổng A=1/2+5/6+11/12+19/20+...+9701/9702+9899/9900
Chứng tỏ A<99
Có: \(A=\frac{1}{2}+\frac{5}{6}+...+\frac{9899}{9900}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{9900}\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)\)
\(=99-\frac{99}{100}< 99\)
\(\Rightarrow A< 99\)
1.Chứng minh rằng: √2 + √6 +√12 + √20 < 12
2. Cho A=1/5+2/(5^2)+3/(5^3)+......+10/(5^10)+11/(5^11). Chứng minh rằng A < 5/16
Bài 1: Cho A= 2 + 2 ^ 2 + 2 ^ 3 +.......+2^ 60 . Chứng tỏ rằng: 4 chia hết cho 3,5,7. Bài 2: Cho S= 1 + 5 ^ 2 + 5 ^ 4 + 5 ^ 6 +***+5^ 2020 . Chứng minh rằng S chia hết cho 313 Bài 3: Tính A= 5 + 5 ^ 2 + 5 ^ 3 +...+5^ 12
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)