Giải phương trình: (chú ý điều kiện)
\(\sqrt{43-x}=x-1\).
Giải các phương trình sau bằng phương pháp nhân thêm lượng liên hợp.
a) \(\sqrt{3x+1}+2x=\sqrt{x-4}-5;\)
b) \(\sqrt{3x+5}+x=6+\sqrt{2x+11};\)
c) \(\sqrt{x^2+5x+5}+x^2=\sqrt{x+2}-3x-2.\)
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
b) \(\sqrt{3x+5}+x=6+\sqrt{2x+11}\left(ĐKXĐ:x\ge-\frac{5}{3}\right)\)\(\Leftrightarrow\left(\sqrt{3x+5}-\sqrt{2x+11}\right)+\left(x-6\right)=0\)
\(\Leftrightarrow\frac{3x+5-2x-11}{\sqrt{3x+5}+\sqrt{2x+11}}+\left(x-6\right)=0\)
\(\Leftrightarrow\frac{x-6}{\sqrt{3x+5}+\sqrt{2x+11}}+\left(x-6\right)=0\).
\(\Leftrightarrow\left(x-6\right)\left(\frac{1}{\sqrt{3x+5}+\sqrt{2x+11}}+1\right)=0\)
Giải phương trình:
\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}}{\sqrt{x}+1}\) ( điều kiện: x ≥ 0, x ≠ 1)
ptr thiếu 1 vế rồi. hay là rút gọn nhỉ?
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}}{\sqrt{x}+1}=\dfrac{x-1+x-\sqrt{x}}{\sqrt{x}+1}=\dfrac{-\sqrt{x}-1}{\sqrt{x}+1}=-1\)
làm lại nhé :(((
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}}{\sqrt{x}+1}=\dfrac{x-1+x-\sqrt{x}}{\sqrt{x}+1}=\dfrac{2x-\sqrt{x}-1}{\sqrt{x}+1}\)
1 Tìm điều kiện và tìm x:\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)
2.Tìm điều kiện và giải phương trình:
\(\sqrt{x^2+4x+4}+\sqrt{x^2-10x+25}=7\)
giải phương trình và nêu rõ cách tìm điều kiện
\(\sqrt{1-x}+\sqrt{4+x}=3\)
giải phương trình sau : \(\sqrt{43-x}=x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}43-x\ge0\\43-x=\left(x-1\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le43\\43-x=x^2-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le43\\x^2-x-42=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le43\\\left(x+6\right)\left(x-7\right)=42\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le43\\\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\) (t/m)
Vậy phương trình đã cho có tập nghiệm \(S=\left\{-6;7\right\}\)thỏa mãn đề
ĐKXĐ: \(x\le43\)
Ta có: \(\sqrt{43-x}=x-1\)
\(\Leftrightarrow\left(x-1\right)^2=43-x\)
\(\Leftrightarrow x^2-2x+1-43+x=0\)
\(\Leftrightarrow x^2-x-42=0\)
\(\Leftrightarrow x^2-7x+6x-42=0\)
\(\Leftrightarrow x\left(x-7\right)+6\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-6\left(nhận\right)\end{matrix}\right.\)
Vậy: S={7;-6}
giải phương trình:
\(\sqrt{1-2x^2}=x-1\)
mình giải ra hình như là vô nghiệm vì điều kiện phương trình sai sai
Tìm điều kiện và tìm x bằng cách giải phương trình vô tỷ :\(\sqrt{3x-2}+x^2-x\) = 2
Tìm điều kiện và giải phương trình:
\(\sqrt{x^2-\frac{1}{2}x+\frac{1}{16}}=\frac{1}{4}-x\)
Giải phương trình:
`x(3-\sqrt{3x-1})=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1`
Chú Lâm cíu cháu :<
ĐKXĐ: ...
\(\Leftrightarrow3x-1-x\sqrt{3x-1}+x\sqrt{x+1}-\sqrt{\left(x+1\right)\left(3x-1\right)}=0\)
\(\Leftrightarrow\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)-\sqrt{x+1}\left(\sqrt{3x-1}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{3x-1}-\sqrt{x+1}\right)\left(\sqrt{3x-1}-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=\sqrt{x+1}\\\sqrt{3x-1}=x\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐKXĐ: x \(\ge\)\(\dfrac{1}{3}\)
pt\(\Leftrightarrow\)x(\(\sqrt{x+1}-\sqrt{3x-1}\))+\(\sqrt{3x-1}\left(\sqrt{3x-1}-\sqrt{x+1}\right)\)=0
\(\Leftrightarrow\)(\(\sqrt{x+1}-\sqrt{3x-1}\))(1-\(\sqrt{3x-1}\))=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{3x-1}\\1=\sqrt{3x-1}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{2}{3}\end{matrix}\right.\)(t/m x \(\ge\)\(\dfrac{1}{3}\))
Vậy.....................
\(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)(Đk x≥\(\dfrac{1}{3}\))
ta có:\(x\left(3-\sqrt{3x-1}\right)\)
=\(3x-x\sqrt{3x-1}\)
=\(3x-1-x\sqrt{3x-1}+1\)
=\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)
Ta có \(\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
=\(\sqrt{x^2+2x+1-2+2x^2}-x\sqrt{x+1}+1\)
=\(\sqrt{\left(x+1\right)\left(3x-1\right)}-x\sqrt{x+1}+1\)
=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)
ta có \(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
⇔\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)
⇔\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)=\sqrt{x+1}\left(\sqrt{3x-1}-x\right)\)
⇔\(\sqrt{3x-1}=\sqrt{x+1}\)
⇔\(3x-1=x+1\)
⇔\(2x=2\)
⇔x=1(N)
Vậy x=1