Những câu hỏi liên quan
NQ
Xem chi tiết
NH
Xem chi tiết
PD
3 tháng 3 2023 lúc 21:48

Bài này có rắc rối đâu em?

Thực hiện phép tính trong ngoặc lại là ra dạng (n+1)/n.

1 dãy các số liên tục kéo dài nhân với nhau thì triệt tiêu là xong!

Chúc em học tốt!

Bình luận (0)
NL
Xem chi tiết
DS
8 tháng 5 2017 lúc 22:02

\(T=\frac{3.4.5.6.....100}{2.3.4.5.6.....99}\)

Rút ra nhé:

\(T=\frac{100}{2}\)

T=50.

Chúc em học tốt^^

Bình luận (0)
NA
Xem chi tiết
H24
Xem chi tiết
H24
5 tháng 10 2019 lúc 19:23

\(3\left(2^2+1\right).\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^4+1\right)....\left(2^{64}+1\right)+1\)

\(=\left(2^8-1\right).\left(2^8+1\right)\left(2^{16}+1\right)....\left(2^{64}+1\right)+1\)

\(=\left(2^{64}-1\right).\left(2^{64}+1\right)+1\)

\(=2^{64}-1+1=2^{64}\)

Vậy : \(3\left(2^2+1\right).\left(2^4+1\right)...\left(2^{64}+1\right)+1=2^{64}\)

Bình luận (0)
LV
Xem chi tiết
H24
26 tháng 10 2016 lúc 22:01

=\(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

=\(\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

=...=2^32-1

Bình luận (0)
DG
26 tháng 10 2016 lúc 22:01

nhân hết ra là xong:))

bài về nhà hs phải tự làm

Bình luận (0)
LV
26 tháng 10 2016 lúc 22:06

Cái bước (22-1)(22 + 1)(2+1)(216+1) làm như thế nào mà ra vậy

Bình luận (0)
VL
Xem chi tiết
IE
Xem chi tiết
NT
2 tháng 8 2017 lúc 19:30

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\)

\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\)

\(\Rightarrow2A-A=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)

\(-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\right)\)

\(\Rightarrow A=2-\dfrac{1}{2^{2017}}=\dfrac{2^{2018}-1}{2^{2017}}\)

Bình luận (0)
MS
3 tháng 8 2017 lúc 8:27

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\)

\(2A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\right)\)

\(2A-A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\right)\)

\(A=2-2^{2017}\)

Bình luận (0)
H24
Xem chi tiết
CT
19 tháng 6 2015 lúc 6:13

đề hình như sai thì phải

Bình luận (0)