Những câu hỏi liên quan
MT
Xem chi tiết
TL
28 tháng 11 2017 lúc 16:28

\(A=x^2-2xy+2y^2+2x-10y+2033\\ =x^2-2xy+y^2+y^2+2x-8y-2y+1+16+2016\\ =\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+1+\left(y^2-8y+16\right)+2016\\ =\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\\ =\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y-4\right)^2+2016\\ =\left(x-y+1\right)^2+\left(y-4\right)^2+2016\\ Do\text{ }\left(y-4\right)^2\ge0\forall y\\ \left(x-y+1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x;y\\ \Rightarrow A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\forall x;y\\ Dấu\text{ }''=''\text{ }xảy\text{ }ra\text{ }khi:\left\{{}\begin{matrix}\left(y-4\right)^2=0\\\left(x-y+1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y-4=0\\x-y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x-4+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\\ Vậy\text{ }A_{\left(Min\right)}=2016\text{ }khi\text{ }\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Bình luận (1)
HH
28 tháng 11 2017 lúc 20:55

xem lại đề

Bình luận (4)
NA
Xem chi tiết
NA
Xem chi tiết
PT
Xem chi tiết
PA
14 tháng 7 2017 lúc 14:45

M = 5 - x2 + 2x - 4y2 - 4y

= (- x2 + 2x - 1) + (- 4y2 - 4y - 1) + 7

= 7 - (x - 1)2 - (2y + 1)2\(\le7\)

Dấu "=" xảy ra khi x = 1 và y = - 0,5

(^~^)

M = - x2 + 2xy - 4y2 + 2x + 10y - 8

- M = x2 - 2xy + 4y2 - 2x - 10y + 8

= (y2 + 1 + x2 + 2y - 2xy - 2x) + (3y^2 - 12y + 12) - 5

\(=\left(y+1-x\right)^2+3\left(y-2\right)^2-5\ge-5\)

\(\Rightarrow M\le5\)

Dấu "=" xảy ra khi y = 2 và x = 3.

Bình luận (0)
ND
Xem chi tiết
TN
23 tháng 10 2017 lúc 20:58

ta có:

M=x^2+4y^2-2x-2xy-10y+8

=(x^2-2xy+y^2)-(2x-2y)+3y^2-12y+8

=(x-y)^2-2(x-y)+1+3(y^2-4y+4)-(13-8)

=(x-y-1)^2+3(y-2)^2-5

vì (x-y-1)^2\(\ge0\)với mọi x,y

3(y-2)^2\(\ge0\)với mọi y

suy ra (x-y-1)^2+3(y-2)^2-5\(\ge-5\)với mọi x,y

dấu "=" xảy ra\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)

Vậy GTNN của M là -5 khi \(\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)

Bình luận (0)
TC
Xem chi tiết
AV
Xem chi tiết
H24
9 tháng 8 2017 lúc 11:04

a) \(M=10x^2+6y+4y^2+4xy+2\)

\(=\left(10x^2+4xy+\dfrac{2}{5}y^2\right)+\left(\dfrac{18}{5}y^2+6y+\dfrac{5}{2}\right)-\dfrac{1}{2}\)

\(=10\left(x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)+\dfrac{18}{5}\left(y^2+\dfrac{5}{3}y+\dfrac{25}{36}\right)-\dfrac{1}{2}\)

\(=10\left(x+\dfrac{1}{5}y\right)^2+\dfrac{18}{5}\left(y+\dfrac{5}{6}\right)^2-\dfrac{1}{2}\ge-\dfrac{1}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{5}y=0\\y+\dfrac{5}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{5}{6}\end{matrix}\right.\)

b) \(H=-x^2+2xy-4y^2+2x+10y-8\)

\(=-x^2+2x\left(y+1\right)-\left(y^2+2y+1\right)-\left(3y^2-12y+7\right)\)

\(=-x^2+2x\left(y+1\right)-\left(y+1\right)^2-3\left(y^2-4y+4\right)+5\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

c) \(K=2x^2+2xy-2x+2xy+y^2\)

bn xem lại cái đề nhé, sao lại có 2 lần 2xy

Bình luận (3)
DB
Xem chi tiết
NL
23 tháng 9 2020 lúc 17:06

\(A=\left(x^2+9y^2+1-6xy+2x-6y\right)+\left(y^2+4y+4\right)+2\)

\(A=\left(x-3y+1\right)^2+\left(y+2\right)^2+2\ge2\)

\(A_{min}=2\) khi \(\left\{{}\begin{matrix}x=-7\\y=-2\end{matrix}\right.\)

\(B=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2+6y+9\right)+10\)

\(B=\left(x-y+1\right)^2+\left(y+3\right)^2+10\ge10\)

\(B_{min}=10\) khi \(\left\{{}\begin{matrix}x=-4\\y=-3\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
DB
22 tháng 9 2020 lúc 20:05

giúp mình với mình đang cần gấp

Bình luận (0)
 Khách vãng lai đã xóa