0,75+\(\dfrac{2}{5}x\) = \(\sqrt{\dfrac{25}{4}}\) - \(\dfrac{1}{4}\)
\(\sqrt{\dfrac{4}{25}}+25+\left|-\dfrac{4}{5}\right|-\dfrac{9}{5}\cdot\left(\dfrac{-1}{3}\right)^2+0,75\)
\(=\sqrt{\dfrac{4}{25}+\dfrac{4}{5}-\dfrac{9}{5}\cdot\dfrac{1}{9}+\dfrac{3}{4}}=\sqrt{\dfrac{4}{25}+\dfrac{4}{5}-\dfrac{1}{5}+\dfrac{3}{4}}\)
\(=\sqrt{\dfrac{4}{25}+\dfrac{3}{5}+\dfrac{3}{4}}\)
\(=\sqrt{\dfrac{16+60+75}{100}}=\dfrac{\sqrt{151}}{10}\)
\(\sqrt{\dfrac{4}{25}+\left|-\dfrac{4}{5}\right|-\dfrac{9}{5}.\left(\dfrac{-1}{3}\right)^2+0,75}\)
\(=\sqrt{\dfrac{4}{25}+\dfrac{4}{5}-\dfrac{9}{5}.\dfrac{1}{9}+\dfrac{3}{4}}=\sqrt{\dfrac{4}{25}+\dfrac{20}{25}-\dfrac{9}{45}+\dfrac{3}{4}}=\sqrt{\dfrac{24}{25}-\dfrac{9}{45}+\dfrac{3}{4}}\)
\(=\sqrt{\dfrac{19}{25}+\dfrac{3}{4}}=\sqrt{\dfrac{76}{100}+\dfrac{75}{100}}=\sqrt{\dfrac{151}{100}}=\dfrac{\sqrt{151}}{10}\)
\(\sqrt{\dfrac{4}{25}+|-\dfrac{4}{5}|-\dfrac{9}{5}\times\left(\dfrac{-1}{3}\right)}^2+0,75\)
Tính nhanh ( nếu có thể )
a) (-8,43 . 25 ) . 0,4
b) \(\dfrac{3}{4}.26\dfrac{1}{5}-\dfrac{3}{4}.44\dfrac{1}{5}\)
c) 2 -1,8 : ( 0,75)
d) \(\left(-3\right)^2.\dfrac{1}{3}-\sqrt{49}+\left(-5\right)^3:\sqrt{25}\)
What if I "không thể" (can't)?
a) \(\left(-8,43.25\right).0,4\)
\(=\left(-8,43\right).\left(25.0,4\right)\)
\(=\left(-8,43\right).10\)
\(=-84,3\)
b) \(\dfrac{3}{4}.26\dfrac{1}{5}-\dfrac{3}{4}.44\dfrac{1}{5}\)
\(=\dfrac{3}{4}.\left(26\dfrac{1}{5}-44\dfrac{1}{5}\right)\)
\(=\dfrac{3}{4}.\left(-18\right)\)
\(=-\dfrac{27}{2}\)
c) \(2-1,8:\left(-0,75\right)\)
\(=2-\left(-2,4\right)\)
\(=2+2,4\)
\(=4,4\)
d) \(\left(-3\right)^2.\dfrac{1}{3}-\sqrt{49}+\left(-5\right)^3:\sqrt{25}\)
\(=9.\dfrac{1}{3}-7+\left(-125\right):5\)
\(=3-7-25\)
\(=-29\)
\(a,\left(-8,43.25\right).0,4=-210,75.0,4=-84,3\)
\(b,\dfrac{3}{4}.26\dfrac{1}{5}-\dfrac{3}{4}.44\dfrac{1}{5}=\dfrac{3}{4}.26,2-\dfrac{3}{4}.44,2\)
\(=\dfrac{3}{4}.\left(26,2-44,2\right)\)
\(=\dfrac{3}{4}.\left(-18\right)\)
\(=-13,5\)
\(c,2-1,8:\left(0,75\right)=2-2,4\)
\(=-0,4\)
thực hiện phép tính (tính hợp lí nếu có thể)
1) \(-0,75.\dfrac{12}{-5}.4\dfrac{1}{6}.\left(-1\right)^2\)
2) \(\dfrac{11}{25}.\left(-24,8\right)-\dfrac{11}{25}.75,2\)
3) \(\left(-\dfrac{3}{4}+\dfrac{2}{7}\right):\dfrac{2}{3}+\left(-\dfrac{1}{4}+\dfrac{5}{7}\right):\dfrac{2}{3}\)
4) \(\left(\dfrac{1}{2}-\dfrac{2}{3}\right)-\left(\dfrac{5}{3}-\dfrac{3}{2}\right)+\left(\dfrac{7}{3}-\dfrac{5}{2}\right)\)
5) \(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
6) \(\left(-\dfrac{1}{3}\right)^2.\dfrac{4}{11}+\dfrac{7}{11}.\left(-\dfrac{1}{3}\right)^2\)
5) \(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
=\(4+6-3+5\)
=\(12\)
2) \(\dfrac{11}{25}.\left(-24,8\right)-\dfrac{11}{25}.75,2\)
=\(\dfrac{11}{25}.\left(-24,8-75,2\right)\)
=\(\dfrac{11}{25}.\left(-100\right)\)
=\(-44\)
\(6\)) \(\left(-\dfrac{1}{3}\right)^2\).\(\dfrac{4}{11}+\dfrac{7}{11}.\left(-\dfrac{1}{3}\right)^2\)
=\(\left(-\dfrac{1}{3}\right)^2.\left(\dfrac{4}{11}+\dfrac{7}{11}\right)\)
=\(\left(-\dfrac{1}{3}\right)^2.1\)
=\(\dfrac{1}{9}\)
a : \(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
b : \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)với x ≥ 0 x ≠ 10
c : \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)với x ≥ 0 x ≠ 9
d : \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)với x ≥ 0 x ≠ 9
a: ĐKXĐ: x>0
\(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
b: ĐKXĐ: x>=0; x<>16
\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)
\(=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\cdot\dfrac{\sqrt{x}+2}{x+16}\)
\(=\dfrac{x+16}{x+16}\cdot\dfrac{\sqrt{x}+2}{x-16}=\dfrac{\sqrt{x}+2}{x-16}\)
c: ĐKXĐ: x>=0; x<>25
\(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
d: \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{-3}{\sqrt{x}-3}\)
a) \(\dfrac{2}{5}\sqrt{25}\) -\(\dfrac{1}{2}\sqrt{4}\) b)0,5\(\sqrt{0,09}\) +5\(\sqrt{0,81}\) c)\(\dfrac{2}{5}\sqrt{\dfrac{25}{36}}\) -\(\dfrac{5}{2}\sqrt{\dfrac{4}{25}}\)
d)-2\(\sqrt{\dfrac{-36}{-16}}\) + 5\(\sqrt{\dfrac{-81}{-25}}\)
`#3107.101107`
a)
`2/5 \sqrt{25} - 1/2 \sqrt{4}`
`= 2/5 * \sqrt{5^2} - 1/2 * \sqrt{2^2}`
`= 2/5*5 - 1/2*2`
`= 2 - 1`
`= 1`
b)
`0,5*\sqrt{0,09} + 5*\sqrt{0,81}`
`= 0,5*\sqrt{(0,3)^2} + 5*\sqrt{(0,9)^2}`
`= 0,5*0,3 + 5*0,9`
`= 0,15 + 4,5`
`= 4,65`
c)
`2/5\sqrt{25/36} - 5/2\sqrt{4/25}`
`= 2/5*\sqrt{(5^2)/(6^2)} - 5/2*\sqrt{(2^2)/(5^2)}`
`= 2/5*5/6 - 5/2*2/5`
`= 1/3 - 1`
`= -2/3`
d)
`-2 \sqrt{(-36)/(-16)} + 5 \sqrt{(-81)/(-25)}`
`= -2*\sqrt{36/16} + 5*\sqrt{81/25}`
`= -2*\sqrt{(6^2)/(4^2)} + 5*\sqrt{(9^2)/(5^2)}`
`= -2*6/4 + 5*9/5`
`= -3 + 9`
`= 6`
Thực hiện phép tính:(hợp lý nếu có thể)
a, \(5.\dfrac{5}{27}+\dfrac{7}{23}+0,5.\dfrac{5}{7}+\dfrac{16}{23}+\dfrac{1}{2}\)
b, \(25\dfrac{1}{6}:\dfrac{-4}{5}-45\dfrac{1}{6}:\dfrac{-4}{5}\)
c, \(25.\left(\dfrac{-1}{5}\right)^3+\dfrac{1}{5}-2.\left(\dfrac{-1}{2}\right)^2-\dfrac{1}{2}\)
d, \(-\left(251.3+281\right)+3.251-\left(1-281\right)\)
e, \(\left(0,75-\dfrac{1}{4}\right):\left(-5\right)+\dfrac{1}{15}-\left(-\dfrac{1}{5}\right):\left(-3\right)\)
f, \(\sqrt{\dfrac{4}{81}}:\sqrt{\dfrac{25}{81}}-1\dfrac{2}{5}\)
1. Tính : \(\dfrac{12}{4-\sqrt{10}}\)-6\(\sqrt{\dfrac{5}{2}}\)+\(\dfrac{5\sqrt{2}+\sqrt{10}}{\sqrt{5}+1}\)
2,Rút gọn:A=(\(\dfrac{\sqrt{x}}{\sqrt{x}-5}\)-\(\dfrac{5}{\sqrt{x}+5}\)+\(\dfrac{10\sqrt{x}}{25-x}\)):\(\dfrac{3}{\sqrt{x}+5}\)
1: \(=8+2\sqrt{10}-3\sqrt{10}+\sqrt{10}=8\)
Rút gọn
A=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
B=\(\dfrac{5}{4+\sqrt{11}}+\dfrac{11-3\sqrt{11}}{\sqrt{11}-3}-\dfrac{4}{\sqrt{5}-1}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
C=\(\dfrac{\sqrt{x}+1}{x\sqrt[]{x}+x+\sqrt{x}}:\dfrac{1}{x^2-\sqrt{x}}\) (với x>0; x#1)
D=\(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)
\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)
\(=\frac{1-\sqrt{25}}{-1}=4\)
\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)
\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)
\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)
\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)
\(=1\)
\(C=\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}: \frac{1}{x^2-\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x}(x+\sqrt{x}+1)}.(x^2-\sqrt{x})\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}(x+\sqrt{x}+1)}.\sqrt{x}(\sqrt{x^3}-1)\)
\(=\frac{(\sqrt{x}+1)(\sqrt{x^3}-1)}{x+\sqrt{x}+1}\)
\(=\frac{(\sqrt{x}+1)(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}\)
\(=(\sqrt{x}+1)(\sqrt{x}-1)=x-1\)
1,Tính \(\dfrac{12}{4-\sqrt{10}}-6\sqrt{\dfrac{5}{2}}+\dfrac{5\sqrt{2}+\sqrt{10}}{\sqrt{5}+1}\)
2,Rút gọn:A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{5}{\sqrt{x}+5}+\dfrac{10\sqrt{x}}{25-x}\right):\dfrac{3}{\sqrt{x}+5}\)
1: \(=8+2\sqrt{10}-3\sqrt{10}+\sqrt{10}=8\)