Cho 4 điểm A,B,C,D thuộc đường tròn (O) sao cho AB = CD . CMR: \(\widehat{AOB}=\widehat{COD}\)
Cho bốn điểm A, B, C, D thuộc đường tròn (O) sao cho AB = CD.
Chứng minh rằng : \(\widehat{AOB}=\widehat{COD}\)
\(\Delta AOB=\Delta COD\left(c.c.c\right)\) suy ra \(\widehat{AOB}=\widehat{COD}\)
sao ngắn thế bạn
thế này mới đúng nè
??????????????(tự làm lấy)
Cho bốn điểm A,B,C,D thuộc đường tròn O sao cho AB=CD.CMR\(\widehat{AOB}=\widehat{COD}\)
cho 4 điểm A,B,C,D thuộc đường thẳng tròn tâm O sao cho AB=CD chứng minh rằng
a, tam giac AOB=tam giac COD
b, AOB=COD
a: Xét ΔAOB và ΔCOD có
OA=OC
OB=OD
AB=CD
Do đó: ΔAOB=ΔCOD
b: Ta có: ΔAOB=ΔCOD
nên \(\widehat{AOB}=\widehat{COD}\)
Cho 5 điểm A,B,C,D,E theo thứ tự đó trên đường thẳng a và điểm O nằm ngoài đường thẳng a sao cho: \(4\widehat{AOB}=3\widehat{BOC;}5\widehat{COD}=4\widehat{BOC};6\widehat{DOE}=5\widehat{BOC};\widehat{DOE}-\widehat{AOB}=5^o.\)
Tính số đo các góc:\(\widehat{AOB};\widehat{BOC};\widehat{COD};\widehat{DOE}\)
Cho bốn điểm A, B, C, D thuộc đường tròn (O) sao cho AB = CD. Chứng minh rằng ∠(AOB) = ∠(COD)
Xét ΔAOB và ΔCOD có:
OA = OC (cùng bằng bán kính đường tròn)
OB = OD (cùng bằng bán kính đường tròn)
AB = CD (gt)
⇒ ΔAOB = ΔCOD (c.c.c)
⇒ ∠AOB = ∠COD (hai góc t.ư)
Cho một điểm O ở ngoài đường thẳng xy , hạ OA vuông góc với xy \(\left(A\in xy\right)\). Trên tia Ay lần lượt lấy các điểm B,C,D sao cho AB=BC=CD .
Chửng minh rằng :\(\widehat{AOB}>\widehat{BOC}>\widehat{COD}\)
Cho bốn điểm A, B, C, D thuộc đường tròn (O) sao cho BC = DA.
\widehat{\text{BOC}}BOC bằng góc nào dưới đây?
\widehat{\text{BOA}}BOA.
\widehat{\text{COD}}COD.
\widehat{\text{DOA}}DOA
cho 1 điểm O nằm ngoài đường thẳng xy . Hạ OA vuông góc với xy . Trên tia Ay lấy lần lượt các điểm B,C,D sao cho AB=BC=CD . Chứng minh rằng \(\widehat{AOB}\)>\(\widehat{BOC}\)>\(\widehat{COD}\)
Cho đường tròn $(O)$ đường kính $AB$. $Ax$, $By$ là hai tia tiếp tuyến của đường tròn $(O)$ ($Ax$, $By$ cùng thuộc một nửa mặt phẳng bờ là đường thẳng $AB$). Trên $Ax$ lấy điểm $C$, trên $By$ lấy điểm $D$ sao cho \(\widehat{COD}=90^o\). Chứng minh rằng $CD$ tiếp xúc với đường tròn $(O)$.
Vẽ OH\perp CD\left(H\in CD\right)OH⊥CD(H∈CD). Ta chứng minh OH = r = OB. (r là bán kính của đường tròn (O) ).
Tia CO cắt tia đối của tia By tại E.
Ta có \Delta OAC=\Delta OBE\left(g.c.g\right)\Rightarrow OC=OEΔOAC=ΔOBE(g.c.g)⇒OC=OE.
Tam giác DEC có DO vừa là đường cao vừa là đường trung tuyến nên DEC là tam giác cân tại D.
Khi đó DO cũng là đường phân giác.
OH\perp DC,OB\perp DE\Rightarrow OH=OB.OH⊥DC,OB⊥DE⇒OH=OB..
Suy ra CD tiếp xúc với (O) tại H.
Ta có OH\perp CD,OH=OB=rOH⊥CD,OH=OB=r.
Vậy CD là tiếp tuyến của đường tròn (O).
Vẽ OH⊥CD(H∈CD). Ta chứng minh OH = r = OB. (r là bán kính của đường tròn (O) ).
Tia CO cắt tia đối của tia By tại E.
Ta có ΔOAC=ΔOBE(g.c.g)⇒OC=OE.
Tam giác DEC có DO vừa là đường cao vừa là đường trung tuyến nên DEC là tam giác cân tại D.
Khi đó DO cũng là đường phân giác.
OH⊥DC,OB⊥DE⇒OH=OB..
Suy ra CD tiếp xúc với (O) tại H.
Ta có OH⊥CD,OH=OB=r.
Vậy CD là tiếp tuyến của đường tròn (O).
Vẽ . Ta chứng minh OH = r = OB. (r là bán kính của đường tròn (O) ).
Tia CO cắt tia đối của tia By tại E.
Ta có .
Tam giác DEC có DO vừa là đường cao vừa là đường trung tuyến nên DEC là tam giác cân tại D.
Khi đó DO cũng là đường phân giác.
.
Suy ra CD tiếp xúc với (O) tại H.
Ta có .
Vậy CD là tiếp tuyến của đường tròn (O).