Những câu hỏi liên quan
DD
Xem chi tiết
VL
17 tháng 9 2016 lúc 18:55

3, A=(x-3)^2+(x-11)^2

\(\Rightarrow\)(X^2-3^2)+(x^2-11^2)

\(\Rightarrow\)(X^2-9)+(X^2-121)

Ta có :X^2 \(\ge\)0 và X^2 \(\ge\)0

\(\Rightarrow\)X^2 - 9 \(\le\)-9 và X^2- 121 \(\le\)-121

\(\Rightarrow\)(X^2-9)+(X^2-121)\(\le\)-130

Dấu = xảy ra khi : X=0

Vậy : Min A = -130 khi x=0

Mình mới lớp 7 sai thì thôi nhé

Bình luận (0)
KP
Xem chi tiết
LA
25 tháng 6 2019 lúc 9:27

1, Ta có: \(A=3x^2+8x+9=3\left(x^2+\frac{8}{3}x+3\right)=3\left(x^2+\frac{8}{3}x+\frac{16}{9}+\frac{11}{9}\right)\)

\(=3\left(x+\frac{4}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\forall x\)

=> Min A = 11/3 tại x = -4/3

2, Ta có: \(A=-2x^2+6x+3=-2\left(x^2-3x-\frac{3}{2}\right)=-2\left(x^2-3x+\frac{9}{4}-\frac{15}{4}\right)\)

\(=-2\left(x-\frac{3}{2}\right)^2+\frac{15}{2}\le\frac{15}{2}\forall x\)

=> Max A = 15/2 tại x = 3/2

=.= hk tốt!!

Bình luận (0)
KP
25 tháng 6 2019 lúc 9:38

Cảm ơn

Bình luận (0)
CP
Xem chi tiết
NL
19 tháng 9 2021 lúc 16:29

\(A=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

\(A_{min}=3\) khi \(x=-2\)

\(B=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

\(B_{min}=1\) khi \(x=10\)

\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left(x;y\right)=\left(-3;1\right)\)

Bình luận (0)
HN
Xem chi tiết
NT
17 tháng 12 2023 lúc 20:13

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

Bình luận (0)
H24
Xem chi tiết
TC
3 tháng 9 2021 lúc 21:53

undefined

Bình luận (1)
NT
3 tháng 9 2021 lúc 21:53

a: Ta có: \(A=-x^2+4x+3\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x=2

b: Ta có: \(B=-x^2+x\)

\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Bình luận (0)
TC
3 tháng 9 2021 lúc 21:56

Câu d đề sai bạn nhé, biểu thức này chỉ có min, không có max

undefined

Bình luận (0)
N1
Xem chi tiết
HH
Xem chi tiết
NM
22 tháng 12 2021 lúc 22:22

\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)

Bình luận (0)
LL
22 tháng 12 2021 lúc 22:23

a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

\(minA=2\Leftrightarrow x=3\)

b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)

\(minB=51\Leftrightarrow x=5\)

c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Bình luận (0)
N1
Xem chi tiết
NX
Xem chi tiết
TC
13 tháng 7 2021 lúc 20:20

undefined

Bình luận (0)
NT
13 tháng 7 2021 lúc 23:30

a) Ta có: \(\left|x-2\right|\ge0\forall x\)

\(\Leftrightarrow\left|x-2\right|+15\ge15\forall x\)

Dấu '=' xảy ra khi x=2

b) Ta có: \(\left|x-5\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-5\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-5\right|-4\ge-4\forall x\)

Dấu '=' xảy ra khi x=5

Bình luận (0)