ND

Help me! Giúp mình giải bài này với:

Tìm giá trị nhỏ nhất của biểu thức:

A=10x² + 6xy + y² -4x + 3

MA
25 tháng 9 2016 lúc 19:08

\(A=10x^2+6xy+y^2-4x+3\)

\(A=9x^2+6xy+y^2+x^2-4x+4-1\)

\(A=\left(3x+y\right)^2+\left(x-2\right)^2-1\)

Có: \(\left(3x+y\right)^2+\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(3x+y\right)^2+\left(x-2\right)^2-1\ge-1\)

Dấu = xảy ra khi: \(\left(3x+y\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(3x+y\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+y=0\\x-2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+y=0\\x=2\end{cases}}\Rightarrow\hept{\begin{cases}6+y=0\\x=2\end{cases}}\Rightarrow\hept{\begin{cases}y=-6\\x=2\end{cases}}\)

Vậy: \(Min_A=-1\) tại \(\hept{\begin{cases}y=-6\\x=2\end{cases}}\)

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
KP
Xem chi tiết
HN
Xem chi tiết
N1
Xem chi tiết
HH
Xem chi tiết
N1
Xem chi tiết
TD
Xem chi tiết
VT
Xem chi tiết
VT
Xem chi tiết