Những câu hỏi liên quan
PB
Xem chi tiết
CT
2 tháng 7 2018 lúc 18:29

Xét hiệu:

3(a2 + b2 + c2) - (a + b + c)2

= 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ac

= 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac

= (a - b)2 + (b - c)2 + (c - a)2 ≥ 0

(vì (a - b)2 ≥ 0; (b - c)2 ≥ 0; (c - a)2 ≥ 0 với mọi a, b, c

Nên 3(a2 + b2 + c2) ≥ (a + b + c)2.

Đáp án cần chọn là: C

Bình luận (0)
TD
Xem chi tiết
PU
Xem chi tiết
TN
26 tháng 6 2016 lúc 20:51

a)Ta có:

\(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\)

Do \(\left(a-b\right)^2\ge0\),nên\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

b)Xét \(\left(a+b+c\right)^2+\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\)

Khai triển và rút gọn ta được:\(3\left(a^2+b^2+c^2\right)\)

Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

Bình luận (0)
KZ
Xem chi tiết
KZ
7 tháng 12 2018 lúc 23:15

10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).

b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)

. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).

Vậy : (a + b + c)\(^2\) ≤  3( a\(^2\) + b\(^2\) + c\(^2\)).

Bình luận (0)
H24
7 tháng 12 2018 lúc 23:22

Cách khác : Biến đổi tương đương

a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng

b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)

Bình luận (0)
SC
Xem chi tiết
NT
13 tháng 6 2023 lúc 8:43

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Bình luận (0)
TA
Xem chi tiết
UN
Xem chi tiết
NC
9 tháng 2 2016 lúc 15:53

em chi moi hoc lop 5 thoi a

ma oi nhe

 

 

Bình luận (0)
BV
9 tháng 2 2016 lúc 15:54

thì lấy về phải pt  a)keo 2 ra ngoai 

                            b)keo 3 ra ngoai 

thì ta sẽ có điều cần chứng minh

 còn = thì khi ẩn = 0

Bình luận (0)
BV
9 tháng 2 2016 lúc 15:56

b) mình sai kéo 2 ra ngoài nhé

Bình luận (0)
DA
Xem chi tiết
PB
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NL
13 tháng 8 2021 lúc 1:19

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

Bình luận (0)