rút gọn
B=\(\sqrt{5+\sqrt{13+\sqrt{5}.....}}\) vô hạn căn
Tìm x biết : x = \(\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...................}}}}\)
Trong đó các dấu chấm nghĩa là lặp đi lặp lại cách viết căn thức có chứ 5 và 13 một cách vô hạn lần.
á đù em chưa học anh ơi !
\(x=\sqrt{5+\sqrt{13+\sqrt{5}+\sqrt{13+..............}}}\)
\(\Rightarrow x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+.......}}}\)
\(\Rightarrow x^2-5=\sqrt{13+\sqrt{5+\sqrt{13+..........}}}\)
\(\Rightarrow x^2-5=\sqrt{13+x}\)
\(\Rightarrow x^4-10x^2+25-13-x=0\)
\(\Rightarrow x^4-10x^2-x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)
Hình như trong ngoặc có 2 nghiệm dạng lượng giác :v xài lượng giác hóa thử bạn nhé :) ko thì Cardano :))))))
vãi cả cái bài
Tìm x, biết: \(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+.....}}}}\) trong đó các dấu chấm có nghĩa là lặp đi lặp lại cách viết căn thức có chứa chữ số 5 và 13 một cách vô hạn lần
Nhận xét x > 0
Ta có : \(x^2=5+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}\)
\(\Leftrightarrow x^2-5=\sqrt{13+\sqrt{5+\sqrt{13+....}}}\)
\(\Leftrightarrow\left(x^2-5\right)^2=13+\sqrt{5+\sqrt{13+...}}\)
\(\Leftrightarrow\left(x^2-5\right)^2-13=x\)
\(\Leftrightarrow x^4-10x^2-x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)
Vì pt \(x^3+3x^2-x-4=0\) luôn có nghiệm \(x< 2\) mà \(x>\sqrt{5}>\sqrt{4}=2\)
Vậy x = 3
tìm x biết \(\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...................}}}}\)
trong đó các dấu chấm có nghĩa lặp đi lặp lại cách viết căn thức có chứa 5 và 13 một cách vô hạn lần
Tìm x biết : x=\(\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}\)
Trong đó các dấu chấm có nghĩa là lặp đi lặp lại cách viết căn thức 5 và 13 một cách vô hạn lần
Mình giải được x=3 rồi
còn phương trình còn lại ko bt làm sao giúp mình zới
31 A=\(\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\right)\)
a. rút gọn
b. tính A với x thỏa mãn \(x-5\sqrt{x}+6=0\)
Sửa đề: căn x-5/căn x-3
a: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{5}{\sqrt{x}+3}\)
b: x-5căn x+6=0
=>căn x=2 hoặc căn x=3
=>x=9(loại) hoặc x=4(nhận)
Khi x=4 thì A=5/(2+3)=5/5=1
rút gọn
B=\(\dfrac{x\sqrt{x}-8}{x-2\sqrt{x}}-\dfrac{x\sqrt{x}+8}{x+2\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)tìm đk để B rút gọn
C=\(\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}\)tìm x ∈Z để C ∈Z
b, ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
Ta có : \(B=\dfrac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{x+2}{\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+4}{\sqrt{x}}-\dfrac{x-2\sqrt{x}+4}{\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+4-x+2\sqrt{x}-4+x+2}{\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}+2}{\sqrt{x}}\)
b) Ta có: \(B=\dfrac{x\sqrt{x}-8}{x-2\sqrt{x}}-\dfrac{x\sqrt{x}+8}{x+2\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+4}{\sqrt{x}}-\dfrac{x-2\sqrt{x}+4}{\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+x+2}{\sqrt{x}}\)
c) Ta có: \(C=\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3-5+\left(x-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
Rút gọn
B = \(\dfrac{x+16}{x-4}\)+ \(\dfrac{5}{2-\sqrt{x}}\)
\(B=\dfrac{x+16-5\sqrt{x}-10}{x-4}=\dfrac{x-5\sqrt{x}+6}{x-4}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
Rút gọn
B=\(\sqrt{7+4\sqrt{3}}\)-\(2\sqrt{3}\)
\(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}\)
\(=2+\sqrt{3}-2\sqrt{3}\)
\(=2-\sqrt{3}\)
help me
tính
\(P=\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}\)
\(R=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5.....}}}}}\)
nếu dấu ''=" có nghĩa là lặp lại vô hạn lẫn cách viết
\(T=\sqrt{6\sqrt{6\sqrt{6\sqrt{6\sqrt{6\sqrt{6...}}}}}}\)
Mih chỉ lm đc câu R thôi:
\(R=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5...}}}}}\)
\(\Rightarrow R^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5...}}}}\)
\(\Rightarrow\left(R^2-5\right)^2=13+\sqrt{5+\sqrt{13+\sqrt{5...}}}\)
\(\Rightarrow R^4-10R^2+12=R\) (Vì R là lặp lại vô hạn cách viết nên nếu mũ chẵn lên thì R vẫn là R)
\(\Rightarrow\left(R-3\right)\left(R^3+3R^2-R-4\right)=0\)
Mà \(R^3+3R^2-R-4=\left(R+3\right)\left(R-1\right)\left(R+1\right)-1>0\forall R>\sqrt{5}\)
Nên ta dễ dàng suy ra đc R-3=0 => R=3
\(P=\sqrt{\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2+1^2+2.\sqrt{3}.\sqrt{2}+2.\sqrt{3}.1+2.\sqrt{2}.1}=\sqrt{\left(\sqrt{3}+\sqrt{2}+1\right)^2}\)
\(=\sqrt{3}+\sqrt{2}+1\)